On the importance of initialization and momentum in deep learning

Ilya Sutskever , Geoffrey Hinton , James Martens , George Dahl
international conference on machine learning 1139 -1147

5,111
2013
Generating Text with Recurrent Neural Networks

Ilya Sutskever , Geoffrey E. Hinton , James Martens
international conference on machine learning 1017 -1024

1,776
2011
An Empirical Exploration of Recurrent Network Architectures

Ilya Sutskever , Rafal Jozefowicz , Wojciech Zaremba , Wojciech Zaremba
international conference on machine learning 2342 -2350

2,059
2015
Learning Recurrent Neural Networks with Hessian-Free Optimization

Ilya Sutskever , James Martens
international conference on machine learning 1033 -1040

739
2011
On the Convergence Properties of Contrastive Divergence

Ilya Sutskever , Tijmen Tieleman
international conference on artificial intelligence and statistics 789 -795

137
2010
Visualizing Similarity Data with a Mixture of Maps

Ilya Sutskever , Andriy Mnih , Geoffrey E. Hinton , James Cook
international conference on artificial intelligence and statistics 67 -74

74
2007
Parallelizable Sampling of Markov Random Fields

Ilya Sutskever , James Martens
international conference on artificial intelligence and statistics 517 -524

11
2010
Learning to Execute

Ilya Sutskever , Wojciech Zaremba
arXiv: Neural and Evolutionary Computing

584
2014
Recurrent Neural Network Regularization

Ilya Sutskever , Wojciech Zaremba , Oriol Vinyals
arXiv: Neural and Evolutionary Computing

2,938
2014
Intriguing properties of neural networks

Joan Bruna , Christian Szegedy , Ilya Sutskever , Ian Goodfellow
arXiv: Computer Vision and Pattern Recognition

12,536
2013
Improving neural networks by preventing co-adaptation of feature detectors

Ilya Sutskever , Geoffrey E. Hinton , Alex Krizhevsky , Ruslan R. Salakhutdinov
arXiv: Neural and Evolutionary Computing

9,604
2012
Dropout: a simple way to prevent neural networks from overfitting

Ilya Sutskever , Geoffrey Hinton , Alex Krizhevsky , Ruslan Salakhutdinov
Journal of Machine Learning Research 15 ( 1) 1929 -1958

41,294
2014
Cardinality Restricted Boltzmann Machines

Kevin Swersky , Ilya Sutskever , Daniel Tarlow , Ruslan R Salakhutdinov
neural information processing systems 25 3293 -3301

29
2012
Modelling Relational Data using Bayesian Clustered Tensor Factorization

Ilya Sutskever , Ruslan R Salakhutdinov , Joshua B. Tenenbaum
neural information processing systems 22 1821 -1828

301
2009
Exploiting Similarities among Languages for Machine Translation

Ilya Sutskever , Tomas Mikolov , Quoc V. Le
arXiv: Computation and Language

1,647
2013
Sequence to Sequence Learning with Neural Networks

Ilya Sutskever , Quoc V. Le , Oriol Vinyals
neural information processing systems 27 3104 -3112

21,424
2014
Using matrices to model symbolic relationship

Ilya Sutskever , Geoffrey E. Hinton
neural information processing systems 21 1593 -1600

20
2008
The Recurrent Temporal Restricted Boltzmann Machine

Ilya Sutskever , Geoffrey E. Hinton , Graham W. Taylor
neural information processing systems 21 1601 -1608

550
2008
Learning Multilevel Distributed Representations for High-Dimensional Sequences

Ilya Sutskever , Geoffrey E. Hinton
international conference on artificial intelligence and statistics 548 -555

176
2007
Distributed Representations of Words and Phrases and their Compositionality

Ilya Sutskever , Tomas Mikolov , Greg S Corrado , Kai Chen
neural information processing systems 26 3111 -3119

37,540
2013