A new scatter-based multi-class support vector machine

Robert Jenssen , Marius Kloft , Soren Sonnenburg , Alexander Zien
international workshop on machine learning for signal processing 1 -6

1
2011
mTIM: A Margin-based Transcript Identification Method

Nico Gornitz , Georg Zeller , Jonas Behr , Andre Kahles

The SHOGUN Machine Learning Toolbox

Gunnar Rätsch , Alexander Zien , Sören Sonnenburg , Christian Widmer
Journal of Machine Learning Research 11 ( 60) 1799 -1802

367
2010
Optimized Cutting Plane Algorithm for Large-Scale Risk Minimization

Sören Sonnenburg , Vojtěch Franc
Journal of Machine Learning Research 10 ( 76) 2157 -2192

62
2009
Method and device for detection of splice form and alternative splice forms in dna or rna sequences

Gunnar Rätsch , Bernhard Schölkopf , Sören Sonnenburg , Klaus-Robert Müller

1
2005
Efficient and Accurate Lp-Norm Multiple Kernel Learning

Alexander Zien , Sören Sonnenburg , Klaus-Robert Müller , Pavel Laskov
neural information processing systems 22 997 -1005

346
2009
Hierarchical Multitask Structured Output Learning for Large-scale Sequence Segmentation

Gunnar Rätsch , Sören Sonnenburg , Christian Widmer , Georg Zeller
neural information processing systems 24 2690 -2698

32
2011
The Need for Open Source Software in Machine Learning

Gunnar Rätsch , Bernhard Schölkopf , Leon Bottou , Alexander Smola
Journal of Machine Learning Research 8 ( 81) 2443 -2466

150
2007
A General and Efficient Multiple Kernel Learning Algorithm

Gunnar Rätsch , Sören Sonnenburg , Christin Schäfer
neural information processing systems 18 1273 -1280

221
2005
Large Scale Multiple Kernel Learning

Gunnar Rätsch , Bernhard Schölkopf , Sören Sonnenburg , Christin Schäfer
Journal of Machine Learning Research 7 ( 57) 1531 -1565

1,679
2006
Large Scale Hidden Semi-Markov SVMs

Gunnar Rätsch , Sören Sonnenburg
neural information processing systems 19 1161 -1168

23
2006
A Multi-Class Support Vector Machine Based on Scatter Criteria

Alexander Zien , Robert Jenssen , Sören Sonnenburg , Klaus-Robert Müller

5
2009
A New Discriminative Kernel From Probabilistic Models

Koji Tsuda , Motoaki Kawanabe , Gunnar Rätsch , Sören Sonnenburg
neural information processing systems 14 ( 10) 977 -984

127
2001
A Scatter-Based Prototype Framework and Multi-Class Extension of Support Vector Machines

Robert Jenssen , Marius Kloft , Alexander Zien , Sören Sonnenburg
PLoS ONE 7 ( 10) e42947

9
2012
Support Vector Machines and Kernels for Computational Biology

Asa Ben-Hur , Cheng Soon Ong , Sören Sonnenburg , Bernhard Schölkopf
PLoS Computational Biology 4 ( 10) e1000173 -10

502
2008
Classifying 'drug-likeness' with kernel-based learning methods.

Klaus-Robert Müller , Gunnar Rätsch , Sören Sonnenburg , Sebastian Mika
Journal of Chemical Information and Modeling 45 ( 2) 249 -253

59
2005
Large scale genomic sequence SVM classifiers

Sören Sonnenburg , Gunnar Rätsch , Bernhard Schölkopf
Proceedings of the 22nd international conference on Machine learning - ICML '05 848 -855

44
2005
Combining Multiple Hypothesis Testing with Machine Learning Increases the Statistical Power of Genome-wide Association Studies

Bettina Mieth , Marius Kloft , Juan Antonio Rodríguez , Sören Sonnenburg
Scientific Reports 6 ( 1) 36671

59
2016
Learning Interpretable SVMs for Biological Sequence Classification

Gunnar Rätsch , Sören Sonnenburg , Christin Schäfer
BMC Bioinformatics 7 ( S1) 1 -14

93
2006
The Feature Importance Ranking Measure

Alexander Zien , Nicole Krämer , Sören Sonnenburg , Gunnar Rätsch
european conference on machine learning 694 -709

118
2009