Cross-corpora unsupervised learning of trajectories in autism spectrum disorders

Huseyin Melih Elibol , Vincent Nguyen , Scott Linderman , Matthew Johnson
Journal of Machine Learning Research

1
2016
Using computational theory to constrain statistical models of neural data.

Scott W Linderman , Samuel J Gershman
Current Opinion in Neurobiology 46 14 -24

13
2017
Imaging whole-brain activity to understand behaviour

Albert Lin , Daniel Witvliet , Luis Hernandez-Nunez , Scott W Linderman
Nature Reviews Physics 4 ( 5) 292 -305

10
2022
Simplified state space layers for sequence modeling

Jimmy TH Smith , Andrew Warrington , Scott W Linderman
arXiv preprint arXiv:2208.04933

8
2022
Spontaneous behaviour is structured by reinforcement without explicit reward

Jeffrey E Markowitz , Winthrop F Gillis , Maya Jay , Jeffrey Wood
Nature 614 ( 7946) 108 -117

1
2023
Fast deep neural correspondence for tracking and identifying neurons in C. elegans using semi-synthetic training

Xinwei Yu , Matthew S Creamer , Francesco Randi , Anuj K Sharma
Elife 10 e66410

11
2021
Dose–response modeling in high-throughput cancer drug screenings: an end-to-end approach

Wesley Tansey , Kathy Li , Haoran Zhang , Scott W Linderman
Biostatistics 23 ( 2) 643 -665

14
2022
Dose-response modeling in high-throughput cancer drug screenings: a case study with recommendations for practitioners

Wesley Tansey , Kathy Li , Haoran Zhang , Scott W Linderman
arXiv preprint arXiv:1812.05691

2
2018
Quantifying the behavioral dynamics of C. elegans with autoregressive hidden Markov models

E Kelly Buchanan , Akiva Lipschitz , Scott W Linderman , Liam Paninski
Workshop on Worm’s neural information processing at the 31st conference on neural information processing systems

8
2017
Bayesian inference for latent Hawkes processes

Scott W Linderman , Yixin Wang , David M Blei
Advances in Neural Information Processing Systems

26
2017
Appendix for Poisson-Randomized Gamma Dynamical Systems

Aaron Schein , Scott W Linderman , Mingyuan Zhou , David M Blei

Dynamic and reversible remapping of network representations in an unchanging environment

Isabel IC Low , Alex H Williams , Malcolm G Campbell , Scott W Linderman
Neuron 109 ( 18) 2967 -2980. e11

31
2021
Keypoint-MoSeq: parsing behavior by linking point tracking to pose dynamics

Caleb Weinreb , Jonah Pearl , Sherry Lin , Mohammed Abdal Monium Osman
BioRxiv

28
2023
Scalable bayesian inference for excitatory point process networks

Scott W Linderman , Ryan P Adams
arXiv preprint arXiv:1507.03228

69
2015
Inferring structured connectivity from spike trains under negative-binomial generalized linear models

Scott W Linderman , Ryan P Adams , Jonathan W Pillow
Neuron 50 ( 100) 150 -150

4
2015
Discovering switching autoregressive dynamics in neural spike train recordings

Scott W Linderman , Matthew J Johnson , Sandeep R Datta , Ryan P Adams
Computational and systems neuroscience (Cosyne)

1
2015
Discovering structure in spiking data

Scott W Linderman , Ryan P Adams
New England Machine Learning Day, Cambridge, MA USA

1
2013
Inferring functional connectivity with priors on network topology

Scott W Linderman , Ryan P Adams
Cosyne Abstracts

1
2013