Kinteresttv - towards non-invasive measure of user interest while watching tv

R.B. Madhkour , T Kliegr , I. Pirner , M. Mancas
IFIP Advances in Information and Communication Technology

2014
Towards Linked Hypernyms Dataset 2.0: complementing DBpedia with hypernym discovery

Tom'aš Kliegr , Ondřej Zamazal
language resources and evaluation 3517 -3523

5
2014
EasyMiner/R Preview: Towards a Web Interface for Association Rule Learning and Classification in R.

Tomás Kliegr , Jaroslav Kuchar , Vaclav Zeman , Stanislav Vojír
rules and rule markup languages for the semantic web

2015
Wikipedia Search as Effective Entity Linking Algorithm.

Tomás Kliegr , Ivo Lasek , Milan Dojchinovski , Ondrej Zamazal
Theory and Applications of Categories

2
2013
SEWEBAR-CMS: A System for Postprocessing Data Mining Models.

David Chudán , Tomás Kliegr , Jan Rauch , Andrej Hazucha
rules and rule markup languages for the semantic web

1
2010
Contextualised user profiling in networked media environments.

Miroslav Vacura , Vasileios Mezaris , Tomás Kliegr , Dorothea Tsatsou
international conference on user modeling, adaptation, and personalization

2012
Business Rule Learning with Interactive Selection of Association Rules.

Tomás Kliegr , Premysl Václav Duben , Stanislav Vojír
rules and rule markup languages for the semantic web

2014
Transforming Association Rules to Business Rules: EasyMiner meets Drools.

Tomás Kliegr , Milan Simunek , Andrej Hazucha , Radek Skrabal
rules and rule markup languages for the semantic web

7
2013
Using EasyMiner API for Financial Data Analysis in the OpenBudgets.eu Project.

Tomás Kliegr , Jaroslav Kuchar , Vaclav Zeman , Stanislav Vojír
rules and rule markup languages for the semantic web

2017
Outlier (Anomaly) Detection Modelling in PMML.

Tomás Kliegr , Jaroslav Kuchar , Adam Ashenfelter
rules and rule markup languages for the semantic web

2
2017
On Cognitive Preferences and the Interpretability of Rule-based Models.

Johannes Fürnkranz , Heiko Paulheim , Tomás Kliegr

5
2018
A review of possible effects of cognitive biases on interpretation of rule-based machine learning models

Johannes Fürnkranz , Tomáš Kliegr , Štěpán Bahník
arXiv: Machine Learning

7
2018
On Cognitive Preferences and the Plausibility of Rule-based Models.

Johannes Fürnkranz , Heiko Paulheim , Tomáš Kliegr
arXiv: Learning

10
2018
PyIDS - Python Implementation of Interpretable Decision Sets Algorithm by Lakkaraju et al, 2016.

Tomás Kliegr , Jirí Filip
rules and rule markup languages for the semantic web

2019
Action Rules: Counterfactual Explanations in Python.

Tomás Kliegr , Lukas Sykora
rules and rule markup languages for the semantic web 28 -41

2020
Advances in Machine Learning for the Behavioral Sciences

Johannes Fürnkranz , Tomáš Kliegr , Štěpán Bahník
arXiv: Learning

2019
Linked hypernyms

Tomáš Kliegr
Journal of Web Semantics 31 59 -69

11
2015
LHD 2.0

Tomáš Kliegr , Ondřej Zamazal
Journal of Web Semantics 39 47 -61

15
2016
RdfRules Preview: Towards an Analytics Engine for Rule Mining in RDF Knowledge Graphs

Václav Zeman , Tomáš Kliegr , Vojtěch Svátek
rules and rule markup languages for the semantic web

3
2018