Escaping Local Optima using Crossover with Emergent or Reinforced Diversity

Timo Kötzing , Per Kristian Lehre , Dirk Sudholt , Martin S. Krejca
arXiv: Neural and Evolutionary Computing

1
2016
Hyper-heuristics Can Achieve Optimal Performance for Pseudo-Boolean Optimisation.

Andrei Lissovoi , Pietro S. Oliveto , John Alasdair Warwicker
arXiv: Neural and Evolutionary Computing

3
2018
On the time and space complexity of genetic programming for evolving Boolean conjunctions

Andrei Lissovoi , Pietro S. Oliveto
national conference on artificial intelligence 1363 -1370

4
2018
When Hypermutations and Ageing Enable Artificial Immune Systems to Outperform Evolutionary Algorithms

Pietro S. Oliveto , Dogan Corus , Donya Yazdani
arXiv: Neural and Evolutionary Computing

2018
On the Benefits of Populations on the Exploitation Speed of Standard Steady-State Genetic Algorithms

Pietro S. Oliveto , Dogan Corus
arXiv: Neural and Evolutionary Computing

2019
Simple Hyper-heuristics Control the Neighbourhood Size of Randomised Local Search Optimally for LeadingOnes.

Andrei Lissovoi , Pietro S. Oliveto , John Alasdair Warwicker
arXiv: Neural and Evolutionary Computing

1
2018
Erratum: Simplified Drift Analysis for Proving Lower Bounds in Evolutionary Computation

Pietro S. Oliveto , Carsten Witt
arXiv: Neural and Evolutionary Computing

33
2012
Standard Steady State Genetic Algorithms Can Hillclimb Faster than Mutation-only Evolutionary Algorithms

Pietro S. Oliveto , Dogan Corus
arXiv: Neural and Evolutionary Computing

2
2017
Fast Artificial Immune Systems

Pietro S. Oliveto , Dogan Corus , Donya Yazdani
arXiv: Neural and Evolutionary Computing

4
2018
On the Impact of the Cutoff Time on the Performance of Algorithm Configurators

Dirk Sudholt , Pietro S. Oliveto , George T. Hall
arXiv: Neural and Evolutionary Computing

1
2019
Theoretical Analysis of Stochastic Search Algorithms.

Per Kristian Lehre , Pietro S. Oliveto
Handbook of Heuristics 849 -884

5
2017
Analysis of the Performance of Algorithm Configurators for Search Heuristics with Global Mutation Operators

Dirk Sudholt , Pietro Simone Oliveto , George T. Hall
arXiv: Neural and Evolutionary Computing

1
2020
Tutorials at PPSN 2016

Giovanni Squillero , Thomas Bartz-Beielstein , Per Kristian Lehre , Michael G. Epitropakis
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 1012 -1022

2016
Fast Perturbative Algorithm Configurators

Dirk Sudholt , Pietro Simone Oliveto , George T. Hall
arXiv: Neural and Evolutionary Computing

2020
Fast Immune System Inspired Hypermutation Operators for Combinatorial Optimisation

P. S. Oliveto , D. Corus , D. Yazdani
arXiv: Neural and Evolutionary Computing

2020
On Steady-State Evolutionary Algorithms and Selective Pressure: Why Inverse Rank-Based Allocation of Reproductive Trials is Best.

Andrei Lissovoi , Pietro S. Oliveto , Carsten Witt , Dogan Corus
arXiv: Neural and Evolutionary Computing

2021
Fast Immune System Inspired Hypermutation Operators for Combinatorial Optimisation

Pietro Simone Oliveto , Doğan Çörüş , Donya Yazdani
IEEE Transactions on Evolutionary Computation 1 -1

2021