Fast and accurate predictions of covalent bonds in chemical space

Stijn Fias , O. Anatole von Lilienfeld , Raghunathan Ramakrishnan , K. Y. Samuel Chang
Journal of Chemical Physics 144 ( 17) 174110 -174110

27
2016
Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties

O. Anatole von Lilienfeld , O. Anatole von Lilienfeld , Raghunathan Ramakrishnan , Matthias Rupp
arXiv: Chemical Physics

224
2013
2021
High-throughput design of Peierls and charge density wave phases in Q1D organometallic materials

Raghunathan Ramakrishnan , Prakriti Kayastha
Journal of Chemical Physics 154 ( 6) 061102

2021
Revving up 13C NMR shielding predictions across chemical space: Benchmarks for atoms-in-molecules kernel machine learning with new data for 134 kilo molecules

Raghunathan Ramakrishnan , Sabyasachi Chakraborty , Amit Gupta
Machine Learning: Science and Technology 2 ( 3) 035010

2021
Troubleshooting Unstable Molecules in Chemical Space

Raghunathan Ramakrishnan , Sabyasachi Chakraborty , Salini Senthil
Chemical Science 12 ( 15) 5566 -5573

2021
Machine Learning Modeling of Materials with a Group-Subgroup Structure

Raghunathan Ramakrishnan , Prakriti Kayastha
Machine Learning: Science and Technology

2021
Vibrational energy levels of difluorodioxirane computed with variational and perturbative methods from a hybrid force field.

Raghunathan Ramakrishnan , Tucker Carrington
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 119 107 -112

1
2014
Genetic optimization of training sets for improved machine learning models of molecular properties

Nicholas J. Browning , Raghunathan Ramakrishnan , O. Anatole von Lilienfeld , Ursula Roethlisberger
Journal of Physical Chemistry Letters 8 ( 7) 1351 -1359

39
2017
The DFT + U method in the linear combination of Gaussian-type orbitals framework: Role of 4f orbitals in the bonding of LuF3

Raghunathan Ramakrishnan , Alexei V. Matveev , Notker Rösch
Chemical Physics Letters 468 ( 4) 158 -161

18
2009
Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach

Raghunathan Ramakrishnan , Pavlo O. Dral , Matthias Rupp , O. Anatole von Lilienfeld
Journal of Chemical Theory and Computation 11 ( 5) 2087 -2096

582
2015
Quantum chemistry structures and properties of 134 kilo molecules

Raghunathan Ramakrishnan , Pavlo O. Dral , Matthias Rupp , O. Anatole von Lilienfeld
Scientific Data 1 ( 1) 140022 -140022

1,169
2014
Semi-quartic force fields retrieved from multi-mode expansions: Accuracy, scaling behavior, and approximations

Raghunathan Ramakrishnan , Guntram Rauhut
Journal of Chemical Physics 142 ( 15) 154118 -154118

35
2015
Self-interaction artifacts on structural features of uranyl monohydroxide from Kohn–Sham calculations

Raghunathan Ramakrishnan , Alexei V. Matveev , Sven Krüger , Notker Rösch
Theoretical Chemistry Accounts 130 ( 2) 361 -369

6
2011
Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space

Katja Hansen , Franziska Biegler , Raghunathan Ramakrishnan , Wiktor Pronobis
Journal of Physical Chemistry Letters 6 ( 12) 2326 -2331

661
2015
Machine Learning for Quantum Mechanical Properties of Atoms in Molecules

Matthias Rupp , Raghunathan Ramakrishnan , O. Anatole von Lilienfeld
Journal of Physical Chemistry Letters 6 ( 16) 3309 -3313

121
2015
Effects of the self-interaction error in Kohn–Sham calculations: A DFT + U case study on penta-aqua uranyl(VI)

Raghunathan Ramakrishnan , Alexei V. Matveev , Notker Rösch
Computational and Theoretical Chemistry 963 ( 2) 337 -343

9
2011