Lightweight neighborhood cardinality estimation in dynamic wireless networks

Koen Langendoen , Marco Zuniga , Marco Cattani , Andreas Loukas
information processing in sensor networks 179 -189

19
2014
Towards Communication-Aware Robust Topologies.

Chen Avin , Stefan Schmid , Andreas Loukas , Alexandr Hercules
arXiv: Networking and Internet Architecture

1
2017
Fast Approximate Spectral Clustering for Dynamic Networks

Pierre Vandergheynst , Lionel Martin , Andreas Loukas
arXiv: Machine Learning

13
2017
How Close Are the Eigenvectors of the Sample and Actual Covariance Matrices

Andreas Loukas
international conference on machine learning 2228 -2237

6
2017
Spectrally approximating large graphs with smaller graphs.

Pierre Vandergheynst , Andreas Loukas
arXiv: Learning

69
2018
Graph reduction with spectral and cut guarantees

Andreas Loukas
arXiv: Data Structures and Algorithms

67
2018
Discriminative structural graph classification.

Nathanaël Perraudin , Andreas Loukas , Younjoo Seo
arXiv: Learning

11
2019
On the Relationship between Self-Attention and Convolutional Layers

Andreas Loukas , Martin Jaggi , Jean-Baptiste Cordonnier
international conference on learning representations

383
2020
What graph neural networks cannot learn: depth vs width

Andreas Loukas
international conference on learning representations

185
2020
Graph Coarsening with Preserved Spectral Properties

Yu Jin , Andreas Loukas , Joseph JaJa
international conference on artificial intelligence and statistics 4452 -4462

5
2020
Multi-Head Attention: Collaborate Instead of Concatenate

Andreas Loukas , Martin Jaggi , Jean-Baptiste Cordonnier
arXiv: Learning

36
2021
29
2020
Erdos Goes Neural: an Unsupervised Learning Framework for Combinatorial Optimization on Graphs

Andreas Loukas , Nikolaos Karalias
neural information processing systems 33 6659 -6672

50
2020
Attention is Not All You Need: Pure Attention Loses Rank Doubly Exponentially with Depth

Andreas Loukas , Jean-Baptiste Cordonnier , Yihe Dong
arXiv: Learning

121
2021
Extrapolating Paths with Graph Neural Networks

Jean-Baptiste Cordonnier , Andreas Loukas
international joint conference on artificial intelligence 2187 -2194

13
2019
Dynamic Balanced Graph Partitioning

Chen Avin , Marcin Bienkowski , Andreas Loukas , Maciej Pacut
SIAM Journal on Discrete Mathematics 34 ( 3) 1791 -1812

3
2020
Filtering Random Graph Processes Over Random Time-Varying Graphs

Andreas Loukas , Andrea Simonetto , Geert Leus , Elvin Isufi
IEEE Transactions on Signal Processing 65 ( 16) 4406 -4421

84
2017
A Time-Vertex Signal Processing Framework: Scalable Processing and Meaningful Representations for Time-Series on Graphs

Francesco Grassi , Andreas Loukas , Nathanael Perraudin , Benjamin Ricaud
IEEE Transactions on Signal Processing 66 ( 3) 817 -829

135
2018
Forecasting Time Series With VARMA Recursions on Graphs

Elvin Isufi , Andreas Loukas , Nathanael Perraudin , Geert Leus
IEEE Transactions on Signal Processing 67 ( 18) 4870 -4885

41
2019
rDAN: Toward robust demand-aware network designs

Chen Avin , Alexandr Hercules , Andreas Loukas , Stefan Schmid
Information Processing Letters 133 5 -9

17
2018