Two geometric input transformation methods for fast online reinforcement learning with neural nets

Richard S. Sutton , Banafsheh Rafiee , Huizhen Yu , Sina Ghiassian
arXiv: Learning

8
2018
Prediction in Intelligence: An Empirical Comparison of Off-policy Algorithms on Robots

Richard S. Sutton , Adam White , Banafsheh Rafiee , Sina Ghiassian
adaptive agents and multi-agents systems 332 -340

1
2019
Improving Performance in Reinforcement Learning by Breaking Generalization in Neural Networks

Adam White , Banafsheh Rafiee , Sina Ghiassian , Yat Long Lo
arXiv: Learning

22
2020
Gradient Temporal-Difference Learning with Regularized Corrections

Adam White , Martha White , Sina Ghiassian , Andrew Patterson
international conference on machine learning 1 3524 -3534

3
2020
Using Functional or Structural Magnetic Resonance Images and Personal Characteristic Data to Identify ADHD and Autism

Sina Ghiassian , Russell Greiner , Ping Jin , Matthew R. G. Brown
PLOS ONE 11 ( 12) e0166934

42
2016
Learning to classify psychiatric disorders based on fMR images: Autism vs healthy and ADHD vs healthy

Sina Ghiassian , Russell Greiner , Ping Jin , M Brown
Proceedings of 3rd NIPS Workshop on Machine Learning and Interpretation in NeuroImaging 3 99 -99

32
2013
Soft Preference Optimization: Aligning Language Models to Expert Distributions

Arsalan Sharifnassab , Sina Ghiassian , Saber Salehkaleybar , Surya Kanoria
arXiv preprint arXiv:2405.00747

2024
Online off-policy prediction

Sina Ghiassian , Andrew Patterson , Martha White , Richard S Sutton
arXiv preprint arXiv:1811.02597

30
2018
On the Importance of Uncertainty in Decision-Making with Large Language Models

Nicolò Felicioni , Lucas Maystre , Sina Ghiassian , Kamil Ciosek
arXiv preprint arXiv:2404.02649

2024
From eye-blinks to state construction: Diagnostic benchmarks for online representation learning

Banafsheh Rafiee , Zaheer Abbas , Sina Ghiassian , Raksha Kumaraswamy
Adaptive Behavior 31 3 -19

8
2023
A first empirical study of emphatic temporal difference learning

Sina Ghiassian , Banafsheh Rafiee , Richard S Sutton
arXiv preprint arXiv:1705.04185

11
2017
An empirical comparison of off-policy prediction learning algorithms on the collision task

Sina Ghiassian , Richard S Sutton
arXiv preprint arXiv:2106.00922

6
2021
An empirical comparison of off-policy prediction learning algorithms in the four rooms environment

Sina Ghiassian , Richard S Sutton
arXiv preprint arXiv:2109.05110

5
2021
Does the Adam Optimizer Exacerbate Catastrophic Forgetting?

Dylan R Ashley , Sina Ghiassian , Richard S Sutton
arXiv preprint arXiv:2102.07686

4
2021
Should All Temporal Difference Learning Use Emphasis?

Xiang Gu , Sina Ghiassian , Richard S Sutton
arXiv preprint arXiv:1903.00194

4
2019
Does Standard Backpropagation Forget Less Catastrophically Than Adam?

Dylan R Ashley , Sina Ghiassian , Richard S Sutton
arXiv preprint arXiv:2102.07686

2
2021
Auxiliary task discovery through generate-and-test

Banafsheh Rafiee , Sina Ghiassian , Jun Jin , Richard Sutton
Conference on Lifelong Learning Agents 703 -714

1
2023
In-context Exploration-Exploitation for Reinforcement Learning

Zhenwen Dai , Federico Tomasi , Sina Ghiassian
arXiv preprint arXiv:2403.06826

2024
Investigating Objectives for Off-policy Value Estimation in Reinforcement Learning

Andrew Patterson , Sina Ghiassian , D Gupta , A White
Preparation

1
2021