A Quantifier Elimination Algorithm for Linear Real Arithmetic

作者: David Monniaux

DOI: 10.1007/978-3-540-89439-1_18

关键词: Conjunctive normal formElimination theorySatisfiabilityMathematicsQuantifier eliminationProjection (set theory)ModuloLinear inequalityAlgorithmDisjunctive normal form

摘要: We propose a new quantifier elimination algorithm for the theory of linear real arithmetic. This uses as subroutines satisfiability modulo this and polyhedral projection; there are good algorithms implementations both these. The presented in paper is compared, on examples arising from program analysis problems random examples, to several other implementations, all which cannot solve some that our solves easily.

参考文章(16)
Jean-Louis Imbert, Fourier's Elimination: Which to Choose? PPCP. pp. 117- 129 ,(1993)
Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli, DPLL(T): Fast Decision Procedures Computer Aided Verification. pp. 175- 188 ,(2004) , 10.1007/978-3-540-27813-9_14
David Monniaux, Optimal abstraction on real-valued programs static analysis symposium. pp. 104- 120 ,(2007) , 10.1007/978-3-540-74061-2_7
Saugata Basu, Marie-Françoise Roy, Richard Pollack, Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics) Springer-Verlag New York, Inc.. ,(2006)
Leonardo de Moura, Harald Rueß, Maria Sorea, Lazy Theorem Proving for Bounded Model Checking over Infinite Domains conference on automated deduction. pp. 438- 455 ,(2002) , 10.1007/3-540-45620-1_35
Tobias Nipkow, Linear Quantifier Elimination international joint conference on automated reasoning. pp. 18- 33 ,(2008) , 10.1007/978-3-540-71070-7_3