作者: Ricardo A. Daziano , Taha H. Rashidi , Michel Bierlaire , Prateek Bansal , Rico Krueger
DOI:
关键词: Mathematics 、 Statistics 、 Multinomial logistic regression 、 Conjugate prior 、 Sampling (statistics) 、 Kernel (statistics) 、 Bayes estimator 、 Gibbs sampling 、 Unavailability 、 Logit
摘要: The standard Gibbs sampler of Mixed Multinomial Logit (MMNL) models involves sampling from conditional densities utility parameters using Metropolis-Hastings (MH) algorithm due to unavailability conjugate prior for logit kernel. To address this non-conjugacy concern, we propose the application P\'olygamma data augmentation (PG-DA) technique MMNL estimation. posterior estimates augmented and default are similar two-alternative scenario (binary choice), but encounter empirical identification issues in case more alternatives ($J \geq 3$).