On the $h$-adaptive PUM and the $hp$-adaptive FEM approaches applied to PDEs in quantum mechanics

作者: Jean-Paul Pelteret , Tymofiy Gerasimov , Paul Steinmann , Denis Davydov

DOI:

关键词: Quantum mechanicsPartial differential equationSpectral element methodFinite element methodhp-FEMMathematical analysisExtended finite element methodBoundary knot methodMixed finite element methodMathematicsSmoothed finite element method

摘要: In this paper the $h$-adaptive partition-of-unity method and $h$- $hp$-adaptive finite element are applied to partial differential equations arising in quantum mechanics, namely, Schrodinger equation with Coulomb harmonic potentials, Poisson problem. Implementational details of related enforcing continuity hanging nodes degeneracy basis discussed. The is equipped an a posteriori error estimator, thus enabling implementation error-controlled adaptive mesh refinement strategies. To that end, local interpolation estimates derived for enriched class exponential functions. results same as thereby admit usage standard residual indicators. efficiency compared method. latter implemented by adopting analyticity estimate from Legendre coefficients. An extension approach multiple solution vectors proposed. Numerical confirm remarkable accuracy approach. case Hydrogen atom, linear was found be comparable target eigenvalue $10^{-3}$.

参考文章(34)
Vincent Heuveline, Rolf Rannacher, A posteriori error control for finite element approximations of elliptic eigenvalue problems Advances in Computational Mathematics. ,vol. 15, pp. 107- 138 ,(2001) , 10.1023/A:1014291224961
W Gropp, P Brune, A Dener, S Abhyankar, K Rupp, B Smith, S Balay, D May, T Munson, D Kaushik, H Zhang, K Buschelman, M Knepley, R Mills, L Curfman McInnes, L Dalcin, J Brown, P Sanan, D Karpeyev, M Adams, S Zampini, Eijkhout, PETSc Users Manual Argonne National Laboratory. ,(2019)
T. Gerasimov, M. Rüter, E. Stein, An explicit residual‐type error estimator for Q1‐quadrilateral extended finite element method in two‐dimensional linear elastic fracture mechanics International Journal for Numerical Methods in Engineering. ,vol. 90, pp. 1118- 1155 ,(2012) , 10.1002/NME.3363
T. Eibner, J. M. Melenk, An adaptive strategy for hp-FEM based on testing for analyticity Computational Mechanics. ,vol. 39, pp. 575- 595 ,(2007) , 10.1007/S00466-006-0107-0
Yvon Maday, h−P Finite Element Approximation for Full-Potential Electronic Structure Calculations Chinese Annals of Mathematics, Series B. ,vol. 35, pp. 1- 24 ,(2014) , 10.1007/S11401-013-0819-3
J.-L. Fattebert, R.D. Hornung, A.M. Wissink, Finite element approach for density functional theory calculations on locally-refined meshes Journal of Computational Physics. ,vol. 223, pp. 759- 773 ,(2007) , 10.1016/J.JCP.2006.10.013
J E Pask, P A Sterne, Finite element methods inab initioelectronic structure calculations Modelling and Simulation in Materials Science and Engineering. ,vol. 13, ,(2005) , 10.1088/0965-0393/13/3/R01
I. BABUŠKA, J. M. MELENK, The Partition of Unity Method International Journal for Numerical Methods in Engineering. ,vol. 40, pp. 727- 758 ,(1997) , 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
Michael A Heroux, Roscoe A Bartlett, Vicki E Howle, Robert J Hoekstra, Jonathan J Hu, Tamara G Kolda, Richard B Lehoucq, Kevin R Long, Roger P Pawlowski, Eric T Phipps, Andrew G Salinger, Heidi K Thornquist, Ray S Tuminaro, James M Willenbring, Alan Williams, Kendall S Stanley, None, An overview of the Trilinos project ACM Transactions on Mathematical Software. ,vol. 31, pp. 397- 423 ,(2005) , 10.1145/1089014.1089021