作者: Edoardo Amaldi , Raphael Hauser
关键词: Mathematics 、 Numerical analysis 、 Block (permutation group theory) 、 Discrete mathematics 、 Open problem 、 Bounded function 、 Applied mathematics 、 Function (mathematics) 、 Condition number 、 Classical theorem 、 Linear inequality
摘要: A classical theorem by Block and Levin (Block, H. D., S. A. Levin. 1970. On the boundedness of an iterative procedure for solving a system linear inequalities. Proc. Amer. Math. Soc.26 229-235) states that certain variants relaxation method systems inequalities generate bounded sequences intermediate solutions, even when applied to infeasible systems. Using new approach, we prove more general version this result answer old open problem quantifying bound as function input data.