Boundedness Theorems for the Relaxation Method

作者: Edoardo Amaldi , Raphael Hauser

DOI: 10.1287/MOOR.1050.0164

关键词: MathematicsNumerical analysisBlock (permutation group theory)Discrete mathematicsOpen problemBounded functionApplied mathematicsFunction (mathematics)Condition numberClassical theoremLinear inequality

摘要: A classical theorem by Block and Levin (Block, H. D., S. A. Levin. 1970. On the boundedness of an iterative procedure for solving a system linear inequalities. Proc. Amer. Math. Soc.26 229-235) states that certain variants relaxation method systems inequalities generate bounded sequences intermediate solutions, even when applied to infeasible systems. Using new approach, we prove more general version this result answer old open problem quantifying bound as function input data.

参考文章(27)
Yair Al Censor, Stavros A. Zenios, Parallel Optimization: Theory, Algorithms, and Applications ,(1997)
O. L. Mangasarian, Machine Learning via Polyhedral Concave Minimization Physica-Verlag HD. pp. 175- 188 ,(1996) , 10.1007/978-3-642-99789-1_13
Edoardo Amaldi, Pietro Belotti, Raphael Hauser, Randomized Relaxation Methods for the Maximum Feasible Subsystem Problem Integer Programming and Combinatorial Optimization. ,vol. 3509, pp. 249- 264 ,(2005) , 10.1007/11496915_19
Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal, Convex analysis and minimization algorithms ,(1993)
E. A. Maxwell, A. P. Robertson, W. J. Robertson, Topological vector spaces The Mathematical Gazette. ,vol. 49, pp. 341- ,(1965) , 10.2307/3612911
Alexander Schrijver, Theory of Linear and Integer Programming ,(1986)
R Aharoni, P Duchet, B Wajnryb, Successive Projections on Hyperplanes Journal of Mathematical Analysis and Applications. ,vol. 103, pp. 134- 138 ,(1984) , 10.1016/0022-247X(84)90163-X
Jan Telgen, On relaxation methods for systems of linear inequalities European Journal of Operational Research. ,vol. 9, pp. 184- 189 ,(1982) , 10.1016/0377-2217(82)90071-6