Real-time computation of subdiffraction-resolution fluorescence images.

作者: S. WOLTER , M. SCHÜTTPELZ , M. TSCHEREPANOW , S. VAN DE LINDE , M. HEILEMANN

DOI: 10.1111/J.1365-2818.2009.03287.X

关键词: Data processingArtificial intelligenceRobustness (computer science)Computer scienceMicroscopyComputationResolution (electron density)Computer visionBenchmark (computing)Optical reconstructionVisualization

摘要: … of the simulated PSF and the background noise estimation and … ‘Noise reduction’, we have found that the choice of a spot … ‘Noise reduction’ apply to all of these functions, making …

参考文章(42)
Leonid P. Yaroslavsky, Digital Picture Processing Springer-Verlag New York, Inc.. ,(1985) , 10.1007/978-3-642-81929-2
Michael J. Rust, Xiaowei Zhuang, Wilfred Mark Bates, Sub-diffraction limit image resolution and other imaging techniques ,(2007)
M. Bates, B. Huang, G. T. Dempsey, X. Zhuang, Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes Science. ,vol. 317, pp. 1749- 1753 ,(2007) , 10.1126/SCIENCE.1146598
Manuel F Juette, Travis J Gould, Mark D Lessard, Michael J Mlodzianoski, Bhupendra S Nagpure, Brian T Bennett, Samuel T Hess, Joerg Bewersdorf, Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples Nature Methods. ,vol. 5, pp. 527- 529 ,(2008) , 10.1038/NMETH.1211
Ben Weiss, Fast median and bilateral filtering international conference on computer graphics and interactive techniques. ,vol. 25, pp. 519- 526 ,(2006) , 10.1145/1141911.1141918
J. Gil, M. Werman, Computing 2-D min, median, and max filters IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 15, pp. 504- 507 ,(1993) , 10.1109/34.211471
Sven Ehrich, Error bounds for Gauss-Kronrod quadrature formulae Mathematics of Computation. ,vol. 62, pp. 295- 304 ,(1994) , 10.2307/2153410
Simon Perreault, Patrick Hebert, Median Filtering in Constant Time IEEE Transactions on Image Processing. ,vol. 16, pp. 2389- 2394 ,(2007) , 10.1109/TIP.2007.902329