Drawing Graphs in the Hyperbolic Plane

作者: Bojan Mohar

DOI: 10.1007/3-540-46648-7_13

关键词: Ultraparallel theoremHyperbolic triangleHyperbolic groupHyperbolic treeHyperbolic motionCombinatoricsMathematicsRelatively hyperbolic groupHyperbolic manifoldHyperbolic anglePure mathematics

摘要: It is shown how one can draw graphs on surfaces of negative Euler characteristic by using hyperbolic geometry and circle packing representations. The same approach applies to drawings tessellations.

参考文章(12)
William P. Thurston, The geometry and topology of 3-manifolds [Massachusetts Institute of Technology, Dept. of Mathematics]. ,(1979)
Tamara Munzner, Drawing Large Graphs with H3Viewer and Site Manager graph drawing. pp. 384- 393 ,(1998) , 10.1007/3-540-37623-2_30
Yves Colin de Verdière, Un principe variationnel pour les empilements de cercles Inventiones Mathematicae. ,vol. 104, pp. 655- 669 ,(1991) , 10.1007/BF01245096
Arlan Ramsay, Robert D. Richtmyer, Introduction to Hyperbolic Geometry Universitext. ,vol. 103, pp. 185- ,(1995) , 10.1007/978-1-4757-5585-5
Bojan Mohar, Circle Packings of Maps in Polynomial Time The Journal of Combinatorics. ,vol. 18, pp. 785- 805 ,(1997) , 10.1006/EUJC.1996.0135
Graham R. Brightwell, Edward R. Scheinerman, Representations of planar graphs SIAM Journal on Discrete Mathematics. ,vol. 6, pp. 214- 229 ,(1993) , 10.1137/0406017
Bojan Mohar, Circle packings of maps —The Euclidean case Rendiconti del Seminario Matematico e Fisico di Milano. ,vol. 67, pp. 191- 206 ,(1997) , 10.1007/BF02930499
Duncan Sommerville, The elements of non-Euclidean geometry ,(1914)
Yves Colin de Verdière, Empilements de cercles: Convergence d’une méthode de point fixe Forum Mathematicum. ,vol. 1, pp. 395- 402 ,(1989) , 10.1515/FORM.1989.1.395