Some new results for Banach contractions and Edelstein contractive mappings on fuzzy metric spaces

作者: Ljubomir Ćirić , None

DOI: 10.1016/J.CHAOS.2008.11.010

关键词: MathematicsCommon fixed pointDiscrete mathematicsPure mathematicsType (model theory)Fuzzy metric spaceFuzzy logicGeneral Mathematics

摘要: Abstract The main purpose of this paper is to introduce a new class Banach type fuzzy contractions and present some fixed common point theorems for these mappings, as well the Edelstein locally contractive mappings. Two examples are presented show that our results genuine generalizations many known results.

参考文章(40)
Ivan Kramosil, Jiří Michálek, Fuzzy metrics and statistical metric spaces Kybernetika. ,vol. 11, pp. 336- 344 ,(1975)
A. George, P. Veeramani, On some results in fuzzy metric spaces Fuzzy Sets and Systems. ,vol. 64, pp. 395- 399 ,(1994) , 10.1016/0165-0114(94)90162-7
G Iovane, G Gargiulo, E Zappale, None, A Cantorian potential theory for describing dynamical systems on El Naschie’s space–time Chaos, Solitons & Fractals. ,vol. 27, pp. 588- 598 ,(2006) , 10.1016/J.CHAOS.2005.05.015
M.S. El Naschie, A REVIEW OF APPLICATIONS AND RESULTS OF E-INFINITY THEORY International Journal of Nonlinear Sciences and Numerical Simulation. ,vol. 8, pp. 11- 20 ,(2007) , 10.1515/IJNSNS.2007.8.1.11
V. M. Sehgal, A. T. Bharucha-Reid, Fixed points of contraction mappings on probabilistic metric spaces Theory of Computing Systems \/ Mathematical Systems Theory. ,vol. 6, pp. 97- 102 ,(1972) , 10.1007/BF01706080
M.B. Ghaemi, Bernardo Lafuerza-Guillen, A. Razani, A common fixed point for operators in probabilistic normed spaces Chaos, Solitons & Fractals. ,vol. 40, pp. 1361- 1366 ,(2009) , 10.1016/J.CHAOS.2007.09.016
Dong Qiu, Lan Shu, Jian Guan, None, Common fixed point theorems for fuzzy mappings under Φ-contraction condition Chaos Solitons & Fractals. ,vol. 41, pp. 360- 367 ,(2009) , 10.1016/J.CHAOS.2008.01.003
R Rezaiyan, YJ Cho, R Saadati, None, A common fixed point theorem in Menger probabilistic quasi-metric spaces Chaos, Solitons & Fractals. ,vol. 37, pp. 1153- 1157 ,(2008) , 10.1016/J.CHAOS.2006.10.007
S. S. Chang, B. S. Lee, Y. J. Cho, Y. Q. Chen, S. M. Kang, J. S. Jung, Generalized contraction mapping principle and differential equations in probabilistic metric spaces Proceedings of the American Mathematical Society. ,vol. 124, pp. 2367- 2376 ,(1996) , 10.1090/S0002-9939-96-03289-3