Alternative Specification Error Tests: A Comparative Study

作者: Jerry G. Thursby

DOI: 10.1080/01621459.1979.10481641

关键词: StatisticsAlgorithmSpecificationRamsey RESET testMonte Carlo methodRegression analysisUniformly most powerful testAutocorrelationReset (computing)ResidualMathematics

摘要: Abstract This article compares the power of test RESET to that a number autocorrelation tests in detecting errors omitted variables or incorrect functional form regression analysis. The considered are Durbin-Watson and chi-squared on first H autocorrelations residual vector. Monte Carlo experiments reveal is most powerful for specification robust autocorrelation.

参考文章(7)
J. B. Ramsey, Tests for Specification Errors in Classical Linear Least-Squares Regression Analysis Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 31, pp. 350- 371 ,(1969) , 10.1111/J.2517-6161.1969.TB00796.X
J. Durbin, G. S. Watson, Testing for Serial Correlation in Least Squares Regression. II Springer Series in Statistics. ,vol. 38, pp. 260- 266 ,(1992) , 10.1007/978-1-4612-4380-9_21
George E.P. Box, D. A. Pierce, Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models Journal of the American Statistical Association. ,vol. 65, pp. 1509- 1526 ,(1970) , 10.2307/2284333
Jerry G. Thursby, Peter Schmidt, Some Properties of Tests for Specification Error in a Linear Regression Model Journal of the American Statistical Association. ,vol. 72, pp. 635- 641 ,(1977) , 10.1080/01621459.1977.10480627
A. P. J. Abrahamse, J. Koerts, A Comparison between the Power of the Durbin-Watson Test and the Power of the Blus Test Journal of the American Statistical Association. ,vol. 64, pp. 938- 948 ,(1969) , 10.1080/01621459.1969.10501025
J. Koerts, A. P. J. Abrahamse, On the Power of the Blus Procedure Journal of the American Statistical Association. ,vol. 63, pp. 1227- 1236 ,(1968) , 10.1080/01621459.1968.10480922