‘‘Whatever Works Best for You’’- A New Method for a Priori and Progressive Multi-objective Optimisation

作者: Rui Wang , Robin C. Purshouse , Peter J. Fleming

DOI: 10.1007/978-3-642-37140-0_27

关键词: A priori and a posterioriDecision makerPreference (economics)Machine learningSpace (commercial competition)Artificial intelligenceComputer scienceSet (abstract data type)Process (engineering)Evolutionary algorithmBenchmark (computing)

摘要: Various multi-objective evolutionary algorithms (MOEAs) have been developed to help a decision maker (DM) search for his/her preferred solutions problems. However, none of these approaches has catered simultaneously the two fundamental ways that DM can specify preferences: weights and aspiration levels. In this paper, we propose an approach named iPICEA-g allows his preference in either format. is based on preference-inspired co-evolutionary algorithm (PICEA-g). Solutions are guided toward regions interest (ROIs) by co-evolving sets goal vectors exclusively generated ROIs. Moreover, friendly making technique interaction with optimization process: specifies preferences easily interactively brushing objective space. No direct elicitation numbers required, reducing cognitive burden DM. The performance tested set benchmark problems shown be good.

参考文章(31)
Robin C. Purshouse, Cezar Jalbă, Peter J. Fleming, Preference-driven co-evolutionary algorithms show promise for many-objective optimisation international conference on evolutionary multi criterion optimization. pp. 136- 150 ,(2011) , 10.1007/978-3-642-19893-9_10
L. Rachmawati, D. Srinivasan, Preference Incorporation in Multi-objective Evolutionary Algorithms: A Survey ieee international conference on evolutionary computation. pp. 962- 968 ,(2006) , 10.1109/CEC.2006.1688414
R.C. Purshouse, P.J. Fleming, Evolutionary many-objective optimisation: an exploratory analysis congress on evolutionary computation. ,vol. 3, pp. 2066- 2073 ,(2003) , 10.1109/CEC.2003.1299927
Eckart Zitzler, Simon Künzli, Indicator-Based Selection in Multiobjective Search parallel problem solving from nature. pp. 832- 842 ,(2004) , 10.1007/978-3-540-30217-9_84
Peter J. Fleming, Robin C. Purshouse, Robert J. Lygoe, Many-Objective optimization: an engineering design perspective international conference on evolutionary multi criterion optimization. pp. 14- 32 ,(2005) , 10.1007/978-3-540-31880-4_2
K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization test problems congress on evolutionary computation. ,vol. 1, pp. 825- 830 ,(2002) , 10.1109/CEC.2002.1007032
Rui Wang, Robin C. Purshouse, Peter J. Fleming, Preference-Inspired Coevolutionary Algorithms for Many-Objective Optimization IEEE Transactions on Evolutionary Computation. ,vol. 17, pp. 474- 494 ,(2013) , 10.1109/TEVC.2012.2204264
Ignacy Kaliszewski, Janusz Miroforidis, Dmitry Podkopaev, Interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy European Journal of Operational Research. ,vol. 216, pp. 188- 199 ,(2012) , 10.1016/J.EJOR.2011.07.013