The Group-Lasso for generalized linear models

作者: Volker Roth , Bernd Fischer

DOI: 10.1145/1390156.1390263

关键词: MathematicsGeneralized linear modelPath (graph theory)UniquenessEfficient algorithmMathematical optimizationTest proceduresGroup lasso

摘要: The Group-Lasso method for finding important explanatory factors suffers from the potential non-uniqueness of solutions and also high computational costs. We formulate conditions uniqueness which lead to an easily implementable test procedure that allows us identify all potentially active groups. These results are used derive efficient algorithm can deal with input dimensions in millions approximate solution path efficiently. derived methods applied large-scale learning problems where they exhibit excellent performance testing helps avoid misinterpretations solutions.

参考文章(14)
Peter McCullagh, John Ashworth Nelder, Generalized Linear Models ,(1983)
Michael R. Osborne, Brett Presnell, Berwin A. Turlach, On the LASSO and Its Dual Journal of Computational and Graphical Statistics. ,vol. 9, pp. 319- 337 ,(2000) , 10.2307/1390657
Gene Yeo, Christopher B. Burge, Maximum Entropy Modeling of Short Sequence Motifs with Applications to RNA Splicing Signals Journal of Computational Biology. ,vol. 11, pp. 377- 394 ,(2004) , 10.1089/1066527041410418
Corinne Dahinden, Giovanni Parmigiani, Mark C Emerick, Peter Bühlmann, Penalized likelihood for sparse contingency tables with an application to full-length cDNA libraries BMC Bioinformatics. ,vol. 8, pp. 476- 476 ,(2007) , 10.1186/1471-2105-8-476
Robert Tibshirani, Trevor Hastie, Berwin A. Turlach, Bradley Efron, Jean Michel Loubes, Jean Michel Loubes, Hemant Ishwaran, Robert A. Stine, Keith Knight, Sanford Weisberg, Saharon Rosset, Saharon Rosset, Iain Johnstone, Pascal Massart, Pascal Massart, David Madigan, J. I. Zhu, Greg Ridgeway, Greg Ridgeway, Least angle regression Annals of Statistics. ,vol. 32, pp. 407- 499 ,(2004) , 10.1214/009053604000000067
Jesper Tegnér, Roland Nilsson, José M. Peña, Johan Björkegren, Consistent Feature Selection for Pattern Recognition in Polynomial Time Journal of Machine Learning Research. ,vol. 8, pp. 589- 612 ,(2007)
Lukas Meier, Sara Van De Geer, Peter Bühlmann, The group lasso for logistic regression Journal of the Royal Statistical Society: Series B (Statistical Methodology). ,vol. 70, pp. 53- 71 ,(2008) , 10.1111/J.1467-9868.2007.00627.X
Robert Tibshirani, Regression Shrinkage and Selection Via the Lasso Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 58, pp. 267- 288 ,(1996) , 10.1111/J.2517-6161.1996.TB02080.X