Dielectric properties of bones for the monitoring of osteoporosis

作者: Bilal Amin , Muhammad Adnan Elahi , Atif Shahzad , Emily Porter , Barry McDermott

DOI: 10.1007/S11517-018-1887-Z

关键词: Biomedical engineeringBone volume fractionMaterials scienceMicrowave frequency rangeDielectricOsteoporosisBone mineralHuman physiologyBone quality

摘要: Osteoporosis is one of the most common diseases that leads to bone fractures. Dual-energy X-ray absorptiometry currently employed measure mineral density and diagnose osteoporosis. Alternatively, dielectric properties bones are found be influenced by density; hence, may potentially used Microwave tomographic imaging in development vivo bone. Therefore, foci this work summarize all available data microwave frequency range analyze confounders have resulted variations reported data. This study also compares relationship between quality across different studies. The review suggests exist volume fraction agreement Conversely, evidence a inconsistent summary along with comparison will accelerate devices for monitoring Graphical abstract ᅟ.

参考文章(41)
G. De Mercato, F.J. Garcia Sanchez, Correlation between low-frequency electric conductivity and permittivity in the diaphysis of bovine femoral bone IEEE Transactions on Biomedical Engineering. ,vol. 39, pp. 523- 526 ,(1992) , 10.1109/10.135546
Christopher L. Brace, Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences? Current Problems in Diagnostic Radiology. ,vol. 38, pp. 135- 143 ,(2009) , 10.1067/J.CPRADIOL.2007.10.001
Eugenia Blangino, Ramiro Miguel Irastorza, Carlos Manuel Carlevaro, Carlos Manuel Carlevaro, Fernando Vericat, Fernando Vericat, Modeling of the dielectric properties of trabecular bone samples at microwave frequency Medical & Biological Engineering & Computing. ,vol. 52, pp. 439- 447 ,(2014) , 10.1007/S11517-014-1145-Y
J. Sierpowska, M.J. Lammi, M.A. Hakulinen, J.S. Jurvelin, R. Lappalainen, J. Töyräs, Effect of human trabecular bone composition on its electrical properties Medical Engineering & Physics. ,vol. 29, pp. 845- 852 ,(2007) , 10.1016/J.MEDENGPHY.2006.09.007
G. N. Reddy, Subrata Saha, Electrical and Dielectric Properties of Wet Bone as a Function of Frequency IEEE Transactions on Biomedical Engineering. ,vol. 31, pp. 296- 303 ,(1984) , 10.1109/TBME.1984.325268
H.P. Schwan, K.R. Foster, RF-field interactions with biological systems: Electrical properties and biophysical mechanisms Proceedings of the IEEE. ,vol. 68, pp. 104- 113 ,(1980) , 10.1109/PROC.1980.11589
R.M. Irastorza, C.M. Carlevaro, F. Vericat, Is there any information on micro-structure in microwave tomography of bone tissue? Medical Engineering & Physics. ,vol. 35, pp. 1173- 1180 ,(2013) , 10.1016/J.MEDENGPHY.2012.12.014
Yoon Kong Loke, Vinodh Jeevanantham, Sonal Singh, Bisphosphonates and atrial fibrillation: systematic review and meta-analysis. Drug Safety. ,vol. 32, pp. 219- 228 ,(2009) , 10.2165/00002018-200932030-00004
Jeffrey D. Kosterich, Kenneth R. Foster, Solomon R. Pollack, Dielectric Permittivity and Electrical Conductivity of Fluid Saturated Bone IEEE Transactions on Biomedical Engineering. ,vol. 30, pp. 81- 86 ,(1983) , 10.1109/TBME.1983.325201
Joel R. Wilkie, Maryellen L. Giger, Michael R. Chinander, Tamara J. Vokes, Hui Li, Larry Dixon, Vit Jaros, Comparison of radiographic texture analysis from computed radiography and bone densitometry systems. Medical Physics. ,vol. 31, pp. 882- 891 ,(2004) , 10.1118/1.1650529