Weakly defective varieties

作者: L. Chiantini , C. Ciliberto

DOI: 10.1090/S0002-9947-01-02810-0

关键词: Mathematical analysisAlgebraic geometryVariety (universal algebra)Projective varietySecant varietyHyperplaneProjective geometryManifoldIntersectionMathematicsPure mathematics

摘要: A projective variety X is k-weakly defective' when its intersection with a general (k + 1)-tangent hyperplane has no isolated singularities at the k 1 points of tangency. If k-defective, i.e. if k-secant dimension smaller than expected, then also defective. The converse does not hold in general. classification weakly defective varieties seems to be basic step study higher dimension. We start this here, describing all irreducible surfaces. Our method provides new proof classical Terracini's k-defective

参考文章(17)
Enrico Arbarello, Maurizio Cornalba, Footnotes to a paper of Beniamino Segre Mathematische Annalen. ,vol. 256, pp. 341- 362 ,(1981) , 10.1007/BF01679702
Edoardo Sernesi, C Ciliberto, Singularities of the theta divisor and congruences of planes ,vol. 1, pp. 231- 250 ,(1992)
Joe Harris, A bound on the geometric genus of projective varieties Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 8, pp. 35- 68 ,(1981)
Phillip Griffiths, Joseph Harris, Algebraic geometry and local differential geometry Annales Scientifiques De L Ecole Normale Superieure. ,vol. 12, pp. 355- 452 ,(1979) , 10.24033/ASENS.1370
Barbara Fantechi, On the superadditivity of secant defects Bulletin de la Société mathématique de France. ,vol. 118, pp. 85- 100 ,(1990) , 10.24033/BSMF.2137
David Eisenbud, Joe Harris, Curves in projective space ,(1982)
C Ciliberto, R. Miranda, Angelo Lopez, SOME REMARKS ON THE OBSTRUCTEDNESS OF CONES OVER CURVES OF LOW GENUS Higher dimensional complex varieties. pp. 167- 182 ,(1996)
Alessandro Terracini, Sulle vk per cui la varietÀ degli sh (h + 1) seganti ha dimensione minore delĽordinario Rendiconti del Circolo matematico di Palermo. ,vol. 31, pp. 392- 396 ,(1911) , 10.1007/BF03018812