The Release of Fibroblast Growth Factor-1 from NIH 3T3 Cells in Response to Temperature Involves the Function of Cysteine Residues

作者: Anthony Jackson , Francesca Tarantini , Susan Gamble , Stanley Friedman , Thomas Maciag

DOI: 10.1074/JBC.270.1.33

关键词: DithiothreitolCell biologyExtracellularCysteineBiochemistryGrowth factorMutantTransfection3T3 cellsEndoplasmic reticulumChemistry

摘要: Fibroblast growth factor (FGF)-1 is released from NIH 3T3 cells in response to heat shock as a biologically inactive protein that unable bind heparin and requires activation by (NH4)2SO4 generate active extracellular heparin-binding (Jackson, A., Friedman, S., Zhan, X., Engleka, K. Forough, R., Maciag, T.(1992) Proc. Natl. Acad. Sci. USA 89, 10691-10695). To further study the mechanism of FGF-1 release (42°C), we examined kinetics FGF-1-transfected observed require at least 1 h exposure conditions for FGF-1. Interestingly, agents interfere with function endoplasmic reticulum-Golgi apparatus, exocytosis, multidrug resistance pathway (brefelden A, methylamine, verapamil, respectively) do not inhibit temperature; rather, they exaggerate Because immunoblot analysis conditioned medium heat-shocked revealed presence minor band an apparent molecular weight homodimer because have previously shown FGF-1, but FGF-2, able form chemical oxidation CuCl2 (Engleka, J. Biol. Chem. 267, 11307-11315), whether reducing would substitute activate Indeed, dithiothreitol reduced glutathione are individually monomer cell transfectants. confirm cysteine residues involved temperature, used mutagenesis prepare human Cys-free mutant which Cys30, Cys97, Cys131 were converted serine. Analysis transfected demonstrated into temperature. transfectants brefelden A followed also absence mutant. Finally, ion-exchange reverse-phase chromatographies analyzed resolve under nonreducing conditions. These data demonstrate utilizes important component its vitro temperature exits affinity binding biological activities.

参考文章(14)
R. Forough, Z. Xi, M. MacPhee, S. Friedman, K.A. Engleka, T. Sayers, R.H. Wiltrout, T. Maciag, Differential transforming abilities of non-secreted and secreted forms of human fibroblast growth factor-1. Journal of Biological Chemistry. ,vol. 268, pp. 2960- 2968 ,(1993) , 10.1016/S0021-9258(18)53867-9
S Ortega, M T Schaeffer, D Soderman, J DiSalvo, D L Linemeyer, G Gimenez-Gallego, K A Thomas, Conversion of cysteine to serine residues alters the activity, stability, and heparin dependence of acidic fibroblast growth factor. Journal of Biological Chemistry. ,vol. 266, pp. 5842- 5846 ,(1991) , 10.1016/S0021-9258(19)67674-X
D Martin-Zanca, R Oskam, G Mitra, T Copeland, M Barbacid, Molecular and biochemical characterization of the human trk proto-oncogene. Molecular and Cellular Biology. ,vol. 9, pp. 24- 33 ,(1989) , 10.1128/MCB.9.1.24
F.L. Graham, A.J. van der Eb, A new technique for the assay of infectivity of human adenovirus 5 DNA Virology. ,vol. 52, pp. 456- 467 ,(1973) , 10.1016/0042-6822(73)90341-3
J. Saraste, G. E. Palade, M. G. Farquhar, Temperature-sensitive steps in the transport of secretory proteins through the Golgi complex in exocrine pancreatic cells. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 83, pp. 6425- 6429 ,(1986) , 10.1073/PNAS.83.17.6425
S. Friedman, X. Zhan, T. Maciag, Mutagenesis of the Nuclear Localization Sequence in FGF-1 Alters Protein Stability but Not Mitogenic Activity Biochemical and Biophysical Research Communications. ,vol. 198, pp. 1203- 1208 ,(1994) , 10.1006/BBRC.1994.1170
A. Jackson, S. Friedman, X. Zhan, K. A. Engleka, R. Forough, T. Maciag, Heat shock induces the release of fibroblast growth factor 1 from NIH 3T3 cells. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 89, pp. 10691- 10695 ,(1992) , 10.1073/PNAS.89.22.10691