On the Fractal Distribution of Brain Synapses

作者: Richard Crandall

DOI: 10.1007/978-1-4614-7621-4_14

关键词: Distribution (mathematics)Character (mathematics)FractalMathematicsSynapseFractal dimensionMedical schoolStatistical physics

摘要: Herein we present mathematical ideas for assessing the fractal character of distributions brain synapses. Remarkably, laboratory data are now available in form actual three-dimensional coordinates millions mouse-brain synapses (courtesy Smithlab at Stanford Medical School). We analyze synapse datasets regard to statistical moments and measures. It is found that do not behave as if uniformly random, this observation can be quantified. Accordingly, also find measured dimension each two 2.8 ± 0.05. Moreover, able detect neural layers by generating what call probagrams, paramegrams, fractagrams—these surfaces one whose support axes y-depth (into sample). Even evidently neural-layer dependent.

参考文章(16)
Piotr Indyk, Trevor Darrell, Gregory Shakhnarovich, Nearest-neighbor methods in learning and vision : theory and practice MIT Press. ,(2005)
Mark Fischler, Distribution of minimum distance among N random points in d dimensions Other Information: PBD: 3 May 2002. ,(2002) , 10.2172/794005
Nelson Spruston, Pyramidal neurons: dendritic structure and synaptic integration Nature Reviews Neuroscience. ,vol. 9, pp. 206- 221 ,(2008) , 10.1038/NRN2286
Niels Lynnerup, Jens Christian Brings Jacobsen, Brief communication: age and fractal dimensions of human sagittal and coronal sutures. American Journal of Physical Anthropology. ,vol. 121, pp. 332- 336 ,(2003) , 10.1002/AJPA.10260
Andrzej Z. Gorski, Janusz Skrzat, Error estimation of the fractal dimension measurements of cranial sutures. Journal of Anatomy. ,vol. 208, pp. 353- 359 ,(2006) , 10.1111/J.1469-7580.2006.00529.X
Kristina D. Micheva, Brad Busse, Nicholas C. Weiler, Nancy O'Rourke, Stephen J Smith, Single-Synapse Analysis of a Diverse Synapse Population: Proteomic Imaging Methods and Markers Neuron. ,vol. 68, pp. 639- 653 ,(2010) , 10.1016/J.NEURON.2010.09.024
David H. Bailey, J.M. Borwein, R.E. Crandall, Advances in the theory of box integrals Mathematics of Computation. ,vol. 79, pp. 1839- 1866 ,(2010) , 10.2172/964379
David H. Bailey, Jonathan M. Borwein, Richard E. Crandall, Michael G. Rose, Expectations on fractal sets Applied Mathematics and Computation. ,vol. 220, pp. 695- 721 ,(2013) , 10.1016/J.AMC.2013.06.078
Jonathan M. Borwein, O-Yeat Chan, R. E. Crandall, Higher-Dimensional Box Integrals Experimental Mathematics. ,vol. 19, pp. 431- 446 ,(2010) , 10.1080/10586458.2010.10390634