SPECTRAL METHODS WITH POSTPROCESSING FOR NUMERICAL HYPERBOLIC HEAT TRANSFER

作者: Scott A. Sarra

DOI: 10.1080/713838126

关键词: MathematicsClassification of discontinuitiesEnergy (signal processing)GeometryMathematical analysisSpectral methodHeat transfer

摘要: Under the governing equations of hyperbolic heat transfer, energy propagates through a medium as wave with sharp discontinuities at front. The use spectral methods to solve such problems numerically results in solution which strong numerical oscillations are present due Gibbs-Wilbraham phenomenon. It is demonstrated that spectrally accurate can still be obtained via postprocessing technique.

参考文章(27)
Lloyd N. Trefethen, Spectral Methods in MATLAB ,(2000)
David Gottlieb, Steven A Orszag, Numerical analysis of spectral methods ,(1977)
David Gottlieb, Eitan Tadmor, Recovering Pointwise Values of Discontinuous Data within Spectral Accuracy Birkhäuser Boston. pp. 357- 375 ,(1985) , 10.1007/978-1-4612-5162-0_19
John P Boyd, Chebyshev and Fourier spectral methods Boyd. ,(2001)
David Gottlieb, Steven A. Orszag, Numerical Analysis of Spectral Methods Society for Industrial and Applied Mathematics. ,(1977) , 10.1137/1.9781611970425
David Gottlieb, Chi-Wang Shu, On the Gibbs Phenomenon and Its Resolution SIAM Review. ,vol. 39, pp. 644- 668 ,(1997) , 10.1137/S0036144596301390
Alex Solomonoff, A fast algorithm for spectral differentiation Journal of Computational Physics. ,vol. 98, pp. 174- 177 ,(1992) , 10.1016/0021-9991(92)90182-X
Anne Gelb, Eitan Tadmor, Detection of Edges in Spectral Data Applied and Computational Harmonic Analysis. ,vol. 7, pp. 101- 135 ,(1999) , 10.1006/ACHA.1999.0262
D. E. Glass, M. N. Özişik, D. S. McRae, Brian Vick, ON THE NUMERICAL SOLUTION OF HYPERBOLIC HEAT CONDUCTION Numerical Heat Transfer Part B-fundamentals. ,vol. 8, pp. 497- 504 ,(1985) , 10.1080/01495728508961868