Malware propagation modeling considering software diversity and immunization

作者: Soodeh Hosseini , Mohammad Abdollahi Azgomi , Adel Torkaman Rahmani

DOI: 10.1016/J.JOCS.2016.01.002

关键词: Immunization (finance)Stability (learning theory)Distributed computingSoftwareMalwareTheoretical computer scienceSoftware diversityBasic reproduction numberEpidemic modelScale-free networkComputer science

摘要: Abstract In this paper, we propose a discrete-time susceptible–exposed–infected–recovered–susceptible (SEIRS) epidemic model of malware propagation in scale-free networks (SFNs) with considering software diversity. We study dynamical behavior the SEIRS model, which is determined by threshold (i.e., basic reproductive ratio). With threshold, can predict whether propagates or not. Also, using coloring algorithm, number diverse packages installed on nodes calculated and used as parameter to prevent spreading. Furthermore, investigate global dynamics analyze stability malware-free equilibrium. The evaluated results numerical simulations. Simulation show that proposed considers diversity, more effective than other existing models. have compared different immunization mechanisms, shown targeted better random for controlling spreading SFNs.

参考文章(49)
Abdelouahed Gherbi, Robert Charpentier, Diversity-Based Approaches to Software Systems Security Security Technology. pp. 228- 237 ,(2011) , 10.1007/978-3-642-27189-2_24
Giannis F. Marias, João Barros, Markus Fiedler, Andreas Fischer, Harald Hauff, Ralph Herkenhoener, Antonio Grillo, Alessandro Lentini, Luisa Lima, Charlott Lorentzen, Wojciech Mazurczyk, Hermann Meer, Paulo F. Oliveira, George C. Polyzos, Enric Pujol, Krzysztof Szczypiorski, João P. Vilela, Tiago T. V. Vinhoza, Security and privacy issues for the network of the future Security and Communication Networks. ,vol. 5, pp. 987- 1005 ,(2012) , 10.1002/SEC.384
Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem, Alessandro Vespignani, Epidemic processes in complex networks Reviews of Modern Physics. ,vol. 87, pp. 925- 979 ,(2015) , 10.1103/REVMODPHYS.87.925
Sheng Wen, Wei Zhou, Yini Wang, Wanlei Zhou, Yang Xiang, None, Locating Defense Positions for Thwarting the Propagation of Topological Worms IEEE Communications Letters. ,vol. 16, pp. 560- 563 ,(2012) , 10.1109/LCOMM.2012.030512.112452
Jian-quan Li, Jie Lou, Mei-zhi Lou, Some discrete SI and SIS epidemic models Applied Mathematics and Mechanics-english Edition. ,vol. 29, pp. 113- 119 ,(2008) , 10.1007/S10483-008-0113-Y
Mohammad Reza Faghani, Uyen Trang Nguyen, A Study of XSS Worm Propagation and Detection Mechanisms in Online Social Networks IEEE Transactions on Information Forensics and Security. ,vol. 8, pp. 1815- 1826 ,(2013) , 10.1109/TIFS.2013.2280884
Linda J.S. Allen, Some discrete-time SI, SIR, and SIS epidemic models Mathematical Biosciences. ,vol. 124, pp. 83- 105 ,(1994) , 10.1016/0025-5564(94)90025-6
Zengyun Hu, Zhidong Teng, Haijun Jiang, Stability analysis in a class of discrete SIRS epidemic models Nonlinear Analysis-real World Applications. ,vol. 13, pp. 2017- 2033 ,(2012) , 10.1016/J.NONRWA.2011.12.024
Suleyman Kondakci, Cemali Dincer, Internet epidemiology: healthy, susceptible, infected, quarantined, and recovered Security and Communication Networks. ,vol. 4, pp. 216- 238 ,(2011) , 10.1002/SEC.287
Suzanne M. O’Regan, Thomas C. Kelly, Andrei Korobeinikov, Michael J.A. O’Callaghan, Alexei V. Pokrovskii, Lyapunov functions for SIR and SIRS epidemic models Applied Mathematics Letters. ,vol. 23, pp. 446- 448 ,(2010) , 10.1016/J.AML.2009.11.014