An Overview of Robust Subspace Recovery

作者: Gilad Lerman , Tyler Maunu

DOI: 10.1109/JPROC.2018.2853141

关键词: Machine learningComputer scienceOutlierArtificial intelligenceState (computer science)Subspace topologyWork (electrical)

摘要: This paper will serve as an introduction to the body of work on robust subspace recovery. Robust recovery involves finding underlying low-dimensional in a dataset that is possibly corrupted with outliers. While this problem easy state, it has been difficult develop optimal algorithms due its nonconvexity. emphasizes advantages and disadvantages proposed approaches unsolved problems area.

参考文章(40)
Samuli Visuri, Visa Koivunen, Hannu Oja, Sign and rank covariance matrices Journal of Statistical Planning and Inference. ,vol. 91, pp. 557- 575 ,(2000) , 10.1016/S0378-3758(00)00199-3
Huan Xu, Constantine Caramanis, Shie Mannor, Outlier-Robust PCA: The High-Dimensional Case IEEE Transactions on Information Theory. ,vol. 59, pp. 546- 572 ,(2013) , 10.1109/TIT.2012.2212415
Huan Xu, Constantine Caramanis, Sujay Sanghavi, Robust PCA via Outlier Pursuit IEEE Transactions on Information Theory. ,vol. 58, pp. 3047- 3064 ,(2012) , 10.1109/TIT.2011.2173156
Hans Nyquist, Least orthogonal absolute deviations Computational Statistics & Data Analysis. ,vol. 6, pp. 361- 367 ,(1988) , 10.1016/0167-9473(88)90076-X
David E. Tyler, A Distribution-Free $M$-Estimator of Multivariate Scatter Annals of Statistics. ,vol. 15, pp. 234- 251 ,(1987) , 10.1214/AOS/1176350263
Esa Ollila, David E. Tyler, Regularized M-estimators of scatter matrix IEEE Transactions on Signal Processing. ,vol. 62, pp. 6059- 6070 ,(2014) , 10.1109/TSP.2014.2360826
A. Wiesel, Geodesic Convexity and Covariance Estimation IEEE Transactions on Signal Processing. ,vol. 60, pp. 6182- 6189 ,(2012) , 10.1109/TSP.2012.2218241
M. R. Osborne, G. A. Watson, An Analysis of the Total Approximation Problem in Separable Norms, and an Algorithm for the Total $l_1 $ Problem SIAM Journal on Scientific and Statistical Computing. ,vol. 6, pp. 410- 424 ,(1985) , 10.1137/0906029
Zihan Zhou, Xiaodong Li, John Wright, Emmanuel Candes, Yi Ma, Stable Principal Component Pursuit 2010 IEEE International Symposium on Information Theory. pp. 1518- 1522 ,(2010) , 10.1109/ISIT.2010.5513535