Approximation complexes of blowing-up rings, II

作者: J Herzog , A Simis , W.V Vasconcelos

DOI: 10.1016/0021-8693(83)90173-4

关键词: MathematicsSymmetric algebraPure mathematicsHomology (mathematics)Blowing upArithmetic functionDiscrete mathematicsAlgebra and Number Theory

摘要: This paper is a sequel to [ 111, where we studied the relationships that hold between arithmetical properties of Rees ring, 9(I), and symmetric algebra, Sym(l), an ideal I (and some their fibers) depth Koszul homology modules, H,(I; R), on set generators I. The connection these objects realized by certain differential graded algebras-the so-called approximation complexes-that are built out ordinary complexes. These compIexes show, however. different sensitivities, being acyclic in situations much broader than usual context regular sequences. It has been found extensions thereof, d sequences proper sequences, play here role “acyclic sequence.” interplay complexes will be basic point view here, give:

参考文章(29)
L�cezar Avramov, J�rgen Herzog, The Koszul algebra of a codimension 2 embedding Mathematische Zeitschrift. ,vol. 175, pp. 249- 260 ,(1980) , 10.1007/BF01163026
Ralf Fröberg, Some complex constructions with applications to Poincaré series Séminaire d'Algèbre Paul Dubreil. ,vol. 740, pp. 272- 284 ,(1979) , 10.1007/BFB0071067
Stephen Lichtenbaum, On the vanishing of Tor in regular local rings Illinois Journal of Mathematics. ,vol. 10, pp. 220- 226 ,(1966) , 10.1215/IJM/1256055103
Markus Brodmann, A “Macaulayfication” of unmixed domains Journal of Algebra. ,vol. 44, pp. 221- 234 ,(1977) , 10.1016/0021-8693(77)90176-4
Artibano Micali, Norbert Roby, Algèbres symétriques et syzygies Journal of Algebra. ,vol. 17, pp. 460- 469 ,(1971) , 10.1016/0021-8693(71)90002-0
M. Brodmann, The asymptotic nature of the analytic spread Brodmann, M (1979). The asymptotic nature of the analytic spread. Mathematical Proceedings of the Cambridge Philosophical Society, 86(1):35-39.. ,vol. 86, pp. 35- 39 ,(1979) , 10.1017/S030500410000061X
Luchezar L Avramov, Complete intersections and symmetric algebras Journal of Algebra. ,vol. 73, pp. 248- 263 ,(1981) , 10.1016/0021-8693(81)90357-4
Melvin Hochster, Louis Ratliff, Five theorems on Macaulay rings Pacific Journal of Mathematics. ,vol. 44, pp. 147- 172 ,(1973) , 10.2140/PJM.1973.44.147
Louis Ratliff, ON THE PRIME DIVISORS OF ZERO IN FORM RINGS Pacific Journal of Mathematics. ,vol. 70, pp. 489- 517 ,(1977) , 10.2140/PJM.1977.70.489