Classification of colon cancer based on the expression of randomly selected genes

作者: X.H. Tan , R. Cheng , H.P. Hu , Y.P. Bai

DOI: 10.4238/2015.OCTOBER.19.6

关键词: OncologyGene expressionColorectal cancerBiologyStage (cooking)Gene selectionText miningBioinformaticsClassification methodsCross-validationGeneInternal medicine

摘要: In order to ascertain the relationship between gene expression and colon cancer localization, a classification method based on random selection self-organizing map network is proposed. Different numbers of genes were selected randomly from 54,675 53 patients in stage union for international control II. These then divided into two sets: training set 36 validation 17 patients. this study, we 1000, 100, 50, 30, 10, 5, 3 genes, 1000 times, respectively. The minimum misclassification ratio each group was 3/17 4/17, percentage groups that less than 0.25 approximately 1-7%. Moreover, most (about 82-89%) lower 0.4. Through analysis these low groups, found there few common them. This revealed localization not associated with single but many groups. Furthermore, K-fold cross used test reliability possible informative results indicated using classify tumor feasible.

参考文章(10)
Jennie Si, Daryl R. Kipke, Russell Witte, Jing Lan, Siming Lin, Self-Organizing Maps Biocomputing. pp. 85- 106 ,(2002) , 10.1007/978-1-4613-0259-9_5
Evangelia E Ntzani, John PA Ioannidis, Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment. The Lancet. ,vol. 362, pp. 1439- 1444 ,(2003) , 10.1016/S0140-6736(03)14686-7
David Venet, Jacques E. Dumont, Vincent Detours, Most random gene expression signatures are significantly associated with breast cancer outcome. PLOS Computational Biology. ,vol. 7, ,(2011) , 10.1371/JOURNAL.PCBI.1002240
Scott L. Pomeroy, Pablo Tamayo, Michelle Gaasenbeek, Lisa M. Sturla, Michael Angelo, Margaret E. McLaughlin, John Y. H. Kim, Liliana C. Goumnerova, Peter M. Black, Ching Lau, Jeffrey C. Allen, David Zagzag, James M. Olson, Tom Curran, Cynthia Wetmore, Jaclyn A. Biegel, Tomaso Poggio, Shayan Mukherjee, Ryan Rifkin, Andrea Califano, Gustavo Stolovitzky, David N. Louis, Jill P. Mesirov, Eric S. Lander, Todd R. Golub, Prediction of central nervous system embryonal tumour outcome based on gene expression Nature. ,vol. 415, pp. 436- 442 ,(2002) , 10.1038/415436A
J Moreaux, T Reme, W Leonard, J-L Veyrune, G Requirand, H Goldschmidt, D Hose, B Klein, Gene expression-based prediction of myeloma cell sensitivity to histone deacetylase inhibitors British Journal of Cancer. ,vol. 109, pp. 676- 685 ,(2013) , 10.1038/BJC.2013.392
Stefan Michiels, Serge Koscielny, Catherine Hill, Prediction of cancer outcome with microarrays: a multiple random validation strategy. The Lancet. ,vol. 365, pp. 488- 492 ,(2005) , 10.1016/S0140-6736(05)17866-0
Akbar Biglarian, Enayatollah Bakhshi, Mahmood Reza Gohari, Reza Khodabakhshi, Artificial neural network for prediction of distant metastasis in colorectal cancer. Asian Pacific Journal of Cancer Prevention. ,vol. 13, pp. 927- 930 ,(2012) , 10.7314/APJCP.2012.13.3.927
Laura J. van 't Veer, Hongyue Dai, Marc J. van de Vijver, Yudong D. He, Augustinus A. M. Hart, Mao Mao, Hans L. Peterse, Karin van der Kooy, Matthew J. Marton, Anke T. Witteveen, George J. Schreiber, Ron M. Kerkhoven, Chris Roberts, Peter S. Linsley, René Bernards, Stephen H. Friend, Gene expression profiling predicts clinical outcome of breast cancer Nature. ,vol. 415, pp. 530- 536 ,(2002) , 10.1038/415530A
Enayatollah Bakhshi, Mahmood Reza Gohari, Akbar Biglarian, Mohammad Amin Pourhoseingholi, Use of an artificial neural network to determine prognostic factors in colorectal cancer patients. Asian Pacific Journal of Cancer Prevention. ,vol. 12, pp. 1469- 1472 ,(2011)
Isabelle Guyon, Jason Weston, Stephen Barnhill, Vladimir Vapnik, Gene Selection for Cancer Classification using Support Vector Machines Machine Learning. ,vol. 46, pp. 389- 422 ,(2002) , 10.1023/A:1012487302797