Seleção de parâmetros ADI para resolução da equação de Lyapunov

作者: Tiago Costa Borges

DOI: 10.26512/2007.12.TCC.926

关键词: Mathematics

摘要:

参考文章(11)
W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem Quarterly of Applied Mathematics. ,vol. 9, pp. 17- 29 ,(1951) , 10.1090/QAM/42792
M.G. Safonov, R.Y. Chiang, A Schur method for balanced-truncation model reduction IEEE Transactions on Automatic Control. ,vol. 34, pp. 729- 733 ,(1989) , 10.1109/9.29399
M. Januszewski, J. Machowski, J.W. Bialek, Application of the direct Lyapunov method to improve damping of power swings by control of UPFC IEE Proceedings - Generation, Transmission and Distribution. ,vol. 151, pp. 252- 260 ,(2004) , 10.1049/IP-GTD:20040054
Danny C. Sorensen, Yunkai Zhou, Direct methods for matrix Sylvester and Lyapunov equations Journal of Applied Mathematics. ,vol. 2003, pp. 277- 303 ,(2003) , 10.1155/S1110757X03212055
D. Kleinman, On an iterative technique for Riccati equation computations IEEE Transactions on Automatic Control. ,vol. 13, pp. 114- 115 ,(1968) , 10.1109/TAC.1968.1098829
Jing-Rebecca Li, Jacob White, Low-Rank Solution of Lyapunov Equations SIAM Review. ,vol. 46, pp. 693- 713 ,(2004) , 10.1137/S0036144504443389
D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method SIAM Journal on Matrix Analysis and Applications. ,vol. 13, pp. 357- 385 ,(1992) , 10.1137/0613025
Donald W Peaceman, Henry H Rachford, Jr, The Numerical Solution of Parabolic and Elliptic Differential Equations Journal of The Society for Industrial and Applied Mathematics. ,vol. 3, pp. 28- 41 ,(1955) , 10.1137/0103003