Environmental Liquid Cell Technique for Improved Electron Microscopic Imaging of Soft Matter in Solution.

作者: Sana Azim , Lindsey A. Bultema , Michiel B. de Kock , Ernesto Rafael Osorio-Blanco , Marcelo Calderón

DOI: 10.1017/S1431927620024654

关键词: PolystyreneMaterials scienceSoft matterElectron microscopeTransmission electron microscopyColloidal goldComposite materialCore (optical fiber)Flow velocityElectron

摘要: Liquid-phase transmission electron microscopy is a technique for simultaneous imaging of the structure and dynamics specimens in liquid environment. The conventional sample geometry consists layer tightly sandwiched between two Si3N4 windows with nominal spacing on order 0.5 μm. We describe variation approach, wherein are separated by 10-μm-thick spacer, thus providing room gas flow inside specimen enclosure. Adjusting pressure speed humid air this environmental cell (ELC) creates stable controllable thickness bottom window, facilitating high-resolution observations low mass-thickness contrast objects at doses. demonstrate thicknesses range 160 ± 34 to 340 71 nm resulting corresponding edge resolutions 0.8 0.06 1.7 as measured immersed gold nanoparticles. Liquid 40 8 allowed low-contrast polystyrene particles. Hydration effects ELC have been studied using poly-N-isopropylacrylamide nanogels silica core. Therefore, can be suitable tool situ investigations specimens.

参考文章(64)
H. Kohl, Ludwig Reimer, Transmission Electron Microscopy ,(2009)
Rudolf Alexander Steinbrecht, Karl Zierold, Cryotechniques in Biological Electron Microscopy ,(1987)
K.L. KLEIN, I.M. ANDERSON, N. DE JONGE, Transmission electron microscopy with a liquid flow cell Journal of Microscopy. ,vol. 242, pp. 117- 123 ,(2011) , 10.1111/J.1365-2818.2010.03484.X
A. Cameron Varano, Amina Rahimi, Madeline J. Dukes, Steven Poelzing, Sarah M. McDonald, Deborah F. Kelly, Visualizing virus particle mobility in liquid at the nanoscale Chemical Communications. ,vol. 51, pp. 16176- 16179 ,(2015) , 10.1039/C5CC05744B
Jungwon Park, Hyesung Park, Peter Ercius, Adrian F. Pegoraro, Chen Xu, Jin Woong Kim, Sang Hoon Han, David A. Weitz, Direct Observation of Wet Biological Samples by Graphene Liquid Cell Transmission Electron Microscopy. Nano Letters. ,vol. 15, pp. 4737- 4744 ,(2015) , 10.1021/ACS.NANOLETT.5B01636
Maria Molina, Mazdak Asadian-Birjand, Juan Balach, Julian Bergueiro, Enrico Miceli, Marcelo Calderón, Stimuli-responsive nanogel composites and their application in nanomedicine Chemical Society Reviews. ,vol. 44, pp. 6161- 6186 ,(2015) , 10.1039/C5CS00199D
Sercan Keskin, Stephanie Besztejan, Günther Kassier, Stephanie Manz, Robert Bücker, Svenja Riekeberg, Hoc Khiem Trieu, Andrea Rentmeister, R. J. Dwayne Miller, Visualization of multimerization and self-assembly of DNA-functionalized gold nanoparticles using in-liquid transmission electron microscopy. Journal of Physical Chemistry Letters. ,vol. 6, pp. 4487- 4492 ,(2015) , 10.1021/ACS.JPCLETT.5B02075
Markus Stieger, Walter Richtering, Jan Skov Pedersen, Peter Lindner, Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloids The Journal of Chemical Physics. ,vol. 120, pp. 6197- 6206 ,(2004) , 10.1063/1.1665752
Hong-Gang Liao, Kaiyang Niu, Haimei Zheng, Observation of growth of metal nanoparticles. Chemical Communications. ,vol. 49, pp. 11720- 11727 ,(2013) , 10.1039/C3CC47473A
S. W. Hui, D. F. Parsons, Electron diffraction of wet biological membranes. Science. ,vol. 184, pp. 77- 78 ,(1974) , 10.1126/SCIENCE.184.4132.77