Using temporal profiles of queries for precision prediction

作者: Fernando Diaz , Rosie Jones

DOI: 10.1145/1008992.1008998

关键词: Set (abstract data type)Data miningRanking (information retrieval)Component (UML)Measure (data warehouse)Information retrievalComputer scienceRelevance feedbackQuery expansionKey (cryptography)Language model

摘要: A key missing component in information retrieval systems is self-diagnostic tests to establish whether the system can provide reasonable results for a given query on document collection. If we measure properties of retrieved set documents which allow us predict average precision, automate decision elicit relevance feedback, or modify other ways. We use meta-data attached form time stamps distribution response query, over domain, create temporal profile query. define some useful features this profile. find that using these features, together with content retrieved, improve prediction precision

参考文章(9)
Xiaoyan Li, W. Bruce Croft, Time-based language models Proceedings of the twelfth international conference on Information and knowledge management - CIKM '03. pp. 469- 475 ,(2003) , 10.1145/956863.956951
Jon Kleinberg, Bursty and hierarchical structure in streams Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '02. pp. 91- 101 ,(2002) , 10.1145/775047.775061
Robert Krovetz, Viewing morphology as an inference process international acm sigir conference on research and development in information retrieval. pp. 191- 202 ,(1993) , 10.1145/160688.160718
Steve Cronen-Townsend, Yun Zhou, W. Bruce Croft, Predicting query performance Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval - SIGIR '02. pp. 299- 306 ,(2002) , 10.1145/564376.564429
Ian H. Witten, Eibe Frank, Data mining ACM SIGMOD Record. ,vol. 31, pp. 76- 77 ,(2002) , 10.1145/507338.507355
Victor Lavrenko, W. Bruce Croft, Relevance-Based Language Models international acm sigir conference on research and development in information retrieval. ,vol. 51, pp. 120- 127 ,(2001) , 10.1145/3130348.3130376
Ian Witten, Data Mining ,(2008)
R. Swan, TimeMines : Constructing Timelines with Statistical Models of Word Usage knowledge discovery and data mining. ,(2000)