A mixed finite element method for 2-nd order elliptic problems

作者: P. A. Raviart , J. M. Thomas

DOI: 10.1007/BFB0064470

关键词: Mathematical analysisDiscontinuous Galerkin methodFinite element methodMathematicsSmoothed finite element methodBoundary knot methodExtended finite element methodMixed finite element methodFinite element limit analysisCéa's lemma

摘要: … For convenience, we shall assume in the sequel that ~ is a bounded poZygon of ~2. We then establish a triangulation ~h of made up with triangles and parallelograms K whose …

参考文章(9)
J.T. Oden, GENERALIZED CONJUGATE FUNCTIONS FOR MIXED FINITE ELEMENT APPROXIMATIONS OF BOUNDARY VALUE PROBLEMS The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. pp. 629- 669 ,(1972) , 10.1016/B978-0-12-068650-6.50028-9
F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique. ,vol. 8, pp. 129- 151 ,(1974) , 10.1051/M2AN/197408R201291
Claes Johnson, On the convergence of a mixed finite-element method for plate bending problems Numerische Mathematik. ,vol. 21, pp. 43- 62 ,(1973) , 10.1007/BF01436186
P.-A. Raviart, J. M. Thomas, Primal hybrid finite element methods for 2nd order elliptic equations Mathematics of Computation. ,vol. 31, pp. 391- 413 ,(1977) , 10.1090/S0025-5718-1977-0431752-8
Peter Monk, A Mixed Finite Element Method for the Biharmonic Equation Mathematical Aspects of Finite Elements in Partial Differential Equations#R##N#Proceedings of a Symposium Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, April 1–3, 1974. pp. 125- 145 ,(1974) , 10.1016/B978-0-12-208350-1.50009-1
P. G. Ciarlet, P. A. Raviart, General lagrange and hermite interpolation in Rn with applications to finite element methods Archive for Rational Mechanics and Analysis. ,vol. 46, pp. 177- 199 ,(1972) , 10.1007/BF00252458
B. M. Fraeijs De Veubeke, M. A. Hugge, Dual analysis for heat conduction problems by finite elements International Journal for Numerical Methods in Engineering. ,vol. 5, pp. 65- 82 ,(1972) , 10.1002/NME.1620050107
J. N. Reddy, J. T. ODEN, Convergence of Mixed Finite-Element Approximations of a Class of Linear Boundary-Value Problems Journal of Structural Mechanics. ,vol. 2, pp. 83- 108 ,(1973) , 10.1080/03601217308905301
J.-M. Thomas, Méthode des éléments finis hybrides duaux pour les problèmes elliptiques du second ordre Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique. ,vol. 10, pp. 51- 79 ,(1976) , 10.1051/M2AN/197610R300511