作者: Vítězslav Babický
关键词: Robin boundary condition 、 Mathematics 、 Mathematical analysis 、 Dirichlet boundary condition 、 Reaction–diffusion system 、 Eigenvalues and eigenvectors 、 Boundary value problem 、 Neumann boundary condition 、 Mixed boundary condition 、 Cauchy boundary condition 、 Applied mathematics
摘要: We consider a reaction-diffusion system of the activator-inhibitor type with unilateral boundary conditions leading to quasivariational inequality. show that there exists positive eigenvalue problem and we obtain an instability trivial solution also in some area parameters where same Dirichlet Neumann is stable. Theorems are proved using method jump Leray-Schauder degree.