Destabilization for quasivariational inequalities of reaction-diffusion type

作者: Vítězslav Babický

DOI: 10.1023/A:1023033910657

关键词: Robin boundary conditionMathematicsMathematical analysisDirichlet boundary conditionReaction–diffusion systemEigenvalues and eigenvectorsBoundary value problemNeumann boundary conditionMixed boundary conditionCauchy boundary conditionApplied mathematics

摘要: We consider a reaction-diffusion system of the activator-inhibitor type with unilateral boundary conditions leading to quasivariational inequality. show that there exists positive eigenvalue problem and we obtain an instability trivial solution also in some area parameters where same Dirichlet Neumann is stable. Theorems are proved using method jump Leray-Schauder degree.

参考文章(13)
Jan Eisner, Milan Kučera, Spatial Patterns for reaction-diffusion systems with conditions described by inclusions Applications of Mathematics. ,vol. 42, pp. 421- 449 ,(1997) , 10.1023/A:1022203129542
Pavol Qu�ttner, On the principle of linearized stability for variational inequalities Mathematische Annalen. ,vol. 283, pp. 257- 270 ,(1989) , 10.1007/BF01446434
EDUARDO H. ZARANTONELLO, Projections on Convex Sets in Hilbert Space and Spectral Theory: Part I. Projections on Convex Sets: Part II. Spectral Theory Contributions to Nonlinear Functional Analysis#R##N#Proceedings of a Symposium Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, April 12–14, 1971. pp. 237- 424 ,(1971) , 10.1016/B978-0-12-775850-3.50013-3
Pavel Drábek, Milan Kučera, None, Reaction-diffusion systems: destabilizing effect of unilateral conditions Nonlinear Analysis-theory Methods & Applications. ,vol. 12, pp. 1173- 1192 ,(1988) , 10.1016/0362-546X(88)90051-X
Masayasu Mimura, Yasumasa Nishiura, Masaya Yamaguti, SOME DIFFUSIVE PREY AND PREDATOR SYSTEMS AND THEIR BIFURCATION PROBLEMS Annals of the New York Academy of Sciences. ,vol. 316, pp. 490- 510 ,(1979) , 10.1111/J.1749-6632.1979.TB29492.X
Melvyn S. Berger, G. Duvaut, J. L. Lions, Les inéquations en mécanique et en physique Mathematics of Computation. ,vol. 27, pp. 440- ,(1973) , 10.2307/2005636
Y. Nishiura, Global Structure of Bifurcating Solutions of Some Reaction-Diffusion Systems SIAM Journal on Mathematical Analysis. ,vol. 13, pp. 555- 593 ,(1982) , 10.1137/0513037
Milan Kučera, Reaction-diffusion systems: bifurcation and stabilizing effect of conditions given by inclusions Nonlinear Analysis-theory Methods & Applications. ,vol. 27, pp. 249- 260 ,(1996) , 10.1016/0362-546X(95)00055-Z