Use of Engineered Nanoparticle-Based Fluorescence Methods for Live-Cell Phenomena

作者: Chan-Gi Pack , Min-Kyo Jung , Mi-Roung Song , Jun-Sung Kim , Sung-Sik Han

DOI: 10.1016/B978-0-12-409513-7.00011-7

关键词: ChemistryEngineered NanoparticleAutophagosomeNanoparticleVesicleCell biologyFluorescence correlation spectroscopyEndocytosisElectroporationGreen fluorescent protein

摘要: For understanding the biophysical state of nanomolecules and nanoparticles (NPs) inside a live cell, cellular viscosity represented by diffusion is evaluated with tandem enhanced green fluorescent protein (EGFP) multimers as standard. Inert silica-based (Si-FNPs) combined electroporation are then used to evaluate free single Si-FNPs in cytosolic microenvironment. The uptake into cell quantitatively compared diffusion, results have demonstrated that NPs can freely diffuse cells coefficients determined hydrodynamic size viscosity. Three types mobility during process endocytosis been identified for FNPs. Interestingly, it was found strongly colocalized GFP–LC3, an autophagosome marker protein. approach based on interaction will provide insights developing strategies further development intercellular event-oriented well delivery living cells.

参考文章(53)
Xiaotao Pan, Hanry Yu, Thorsten Wohland, Caili Aw, Yanan Du, FLUORESCENCE CORRELATION SPECTROSCOPY ,(2006)
R. Rigler, �. Mets, J. Widengren, P. Kask, Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion European Biophysics Journal. ,vol. 22, pp. 169- 175 ,(1993) , 10.1007/BF00185777
Toshikazu Tsuji, Shigeko Kawai-Noma, Chan-Gi Pack, Hideki Terajima, Junichiro Yajima, Takayuki Nishizaka, Masataka Kinjo, Hideki Taguchi, Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells Biochemical and Biophysical Research Communications. ,vol. 405, pp. 638- 643 ,(2011) , 10.1016/J.BBRC.2011.01.083
K. Luby-Phelps, P. E. Castle, D. L. Taylor, F. Lanni, Hindered Diffusion of Inert Tracer Particles in the Cytoplasm of Mouse 3T3 Cells Proceedings of the National Academy of Sciences of the United States of America. ,vol. 84, pp. 4910- 4913 ,(1987) , 10.1073/PNAS.84.14.4910
Alan S Verkman, Solute and macromolecule diffusion in cellular aqueous compartments Trends in Biochemical Sciences. ,vol. 27, pp. 27- 33 ,(2002) , 10.1016/S0968-0004(01)02003-5
Noboru Mizushima, Yoshinori Ohsumi, Tamotsu Yoshimori, Autophagosome formation in mammalian cells. Cell Structure and Function. ,vol. 27, pp. 421- 429 ,(2002) , 10.1247/CSF.27.421
Jun-Sung Kim, Tae-Jong Yoon, Kyeong-Nam Yu, Mi Suk Noh, Minah Woo, Byung-Geol Kim, Kee-Ho Lee, Byung-Hyuk Sohn, Seung-Bum Park, Jin-Kyu Lee, Myung-Haing Cho, Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells Journal of Veterinary Science. ,vol. 7, pp. 321- 326 ,(2006) , 10.4142/JVS.2006.7.4.321
Kevin Braeckmans, Kevin Buyens, Broes Naeye, Dries Vercauteren, Hendrik Deschout, Koen Raemdonck, Katrien Remaut, Niek N. Sanders, Jo Demeester, Stefaan C. De Smedt, Advanced fluorescence microscopy methods illuminate the transfection pathway of nucleic acid nanoparticles Journal of Controlled Release. ,vol. 148, pp. 69- 74 ,(2010) , 10.1016/J.JCONREL.2010.08.029
Daniel W. Pack, Allan S. Hoffman, Suzie Pun, Patrick S. Stayton, Design and development of polymers for gene delivery Nature Reviews Drug Discovery. ,vol. 4, pp. 581- 593 ,(2005) , 10.1038/NRD1775