作者: Joel Hass , Michael Hutchings , Roger Schlafly
DOI: 10.1090/S1079-6762-95-03001-0
关键词: Geometry 、 Volume (thermodynamics) 、 SPHERES 、 Isoperimetric inequality 、 Numerical integration 、 Surface (mathematics) 、 Double bubble conjecture 、 Mathematical analysis 、 Mathematics
摘要: The classical isoperimetric inequality states that the surface of smallest area enclosing a given volume in R is sphere. We show least two equal volumes double bubble, made pieces round spheres separated by flat disk, meeting along single circle at an angle 2π/3.