The double bubble conjecture

作者: Joel Hass , Michael Hutchings , Roger Schlafly

DOI: 10.1090/S1079-6762-95-03001-0

关键词: GeometryVolume (thermodynamics)SPHERESIsoperimetric inequalityNumerical integrationSurface (mathematics)Double bubble conjectureMathematical analysisMathematics

摘要: The classical isoperimetric inequality states that the surface of smallest area enclosing a given volume in R is sphere. We show least two equal volumes double bubble, made pieces round spheres separated by flat disk, meeting along single circle at an angle 2π/3.

参考文章(11)
Jean E. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces Annals of Mathematics. ,vol. 103, pp. 489- ,(1976) , 10.2307/1970949
Joel Foisy, Manuel Alfaro Garcia, Jeffrey Brock, Nickelous Hodges, Jason Zimba, The standard double soap bubble in R2 uniquely minimizes perimeter Pacific Journal of Mathematics. ,vol. 159, pp. 47- 59 ,(1993) , 10.2140/PJM.1993.159.47
Frank Morgan, Clusters minimizing area plus length of singular curves Mathematische Annalen. ,vol. 299, pp. 697- 714 ,(1994) , 10.1007/BF01459806
Frederick J. Almgren, Jean E. Taylor, The Geometry of Soap Films and Soap Bubbles Scientific American. ,vol. 235, pp. 82- 93 ,(1976) , 10.1038/SCIENTIFICAMERICAN0776-82
D'Arcy Wentworth Thompson, On Growth and Form ,(1917)
James Eells, The surfaces of Delaunay The Mathematical Intelligencer. ,vol. 9, pp. 53- 57 ,(1987) , 10.1007/BF03023575
F. J. Almgren, Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints Memoirs of the American Mathematical Society. ,vol. 4, pp. 0- 0 ,(1976) , 10.1090/MEMO/0165
Ch. Delaunay, Sur la surface de révolution dont la courbure moyenne est constante. Journal de Mathématiques Pures et Appliquées. pp. 309- 314 ,(1841)