Constrained n-Body Problems

作者: Wojciech Szumiński , Maria Przybylska

DOI: 10.1007/978-3-319-08266-0_22

关键词: Mathematical analysisMathematicsIntegrable systemPoincaré conjectureDifferential (mathematics)Motion (geometry)Holonomic constraintsGalois groupVariational equation

摘要: We consider a problem of mass points interacting gravitationally whose motion is subjected to certain holonomic constraints. The restricted curves or surfaces. illustrate the complicated behaviour trajectories these systems using Poincare cross sections. For some models we prove non-integrability analysing properties differential Galois group variational equations along particular solutions considered systems. Also integrable cases are identified.

参考文章(9)
Marius van der Put, Michael F. Singer, Galois theory of linear differential equations Springer. pp. 1- 82 ,(2003) , 10.1007/978-3-642-55750-7
Martin C. Gutzwiller, Jorge V. José, Chaos in classical and quantum mechanics ,(1990)
Josefina Casasayas, Jaume Llibre, Qualitative analysis of the anisotropic Kepler problem ,(1984)
Martin C. Gutzwiller, Bernoulli sequences and trajectories in the anisotropic Kepler problem Journal of Mathematical Physics. ,vol. 18, pp. 806- 823 ,(1977) , 10.1063/1.523310
Juan J Morales Ruiz, Juan J Morales Ruiz, Differential Galois Theory and Non-Integrability of Hamiltonian Systems ,(1999)
M. Arribas, A. Elipe, A. Riaguas, Non-integrability of anisotropic quasi-homogeneous Hamiltonian systems Mechanics Research Communications. ,vol. 30, pp. 209- 216 ,(2003) , 10.1016/S0093-6413(03)00005-3
Robert L. Devaney, Blowing up Singularities in Classical Mechanical Systems American Mathematical Monthly. ,vol. 89, pp. 535- 552 ,(1982) , 10.1080/00029890.1982.11995493
Andrzej J. Maciejewski, Maria Przybylska, Leon Simpson, Wojciech Szumiński, Non-integrability of the dumbbell and point mass problem Celestial Mechanics and Dynamical Astronomy. ,vol. 117, pp. 315- 330 ,(2013) , 10.1007/S10569-013-9514-7
Martin C. Gutzwiller, Chaos in Classical and Quantum Mechanics Interdisciplinary Applied Mathematics. ,(1990) , 10.1007/978-1-4612-0983-6