Kontsevich--Duflo theorem for Lie pairs

作者: Hsuan-Yi Liao , Mathieu Stiénon , Ping Xu

DOI:

关键词: Lie group actionLie algebroidIsomorphismPure mathematicsTodd classCohomologySheaf cohomologyMathematicsTangent bundleComplex manifoldAlgebra

摘要: The Kontsevich--Duflo theorem states that, for any complex manifold $X$, the Hochschild--Kostant--Rosenberg map twisted by square root of Todd class tangent bundle $X$ is an isomorphism associative algebras from sheaf cohomology $H^{\bullet}(X,\Lambda T_X)$ to Hochschild $HH^{\bullet}(X)$. In this paper, we prove beyond sole manifolds, holds in a very wide range geometric contexts admitting description terms Lie algebroids, which include foliations and manifolds endowed with group action. More precisely, pairs. Every pair $(L,A)$, i.e. data subalgebroid $A$ algebroid $L$, gives rise two Gerstenhaber $H^{\bullet}_{\operatorname{CE}}(A,\mathcal{X}_{\operatorname{poly}}^{\bullet})$ $H^{\bullet}_{\operatorname{CE}}(A,\mathcal{D}_{\operatorname{poly}}^{\bullet})$ playing role similar spaces polyvector fields polydifferential operators. We that between these algebras.

参考文章(34)
Pierre Deligne, John W Morgan, None, Notes on supersymmetry (following Joseph Bernstein) AMS. pp. 41- 97 ,(1999)
K. C. H. Mackenzie, Double Lie algebroids and the double of a Lie bialgebroid arXiv: Differential Geometry. ,(1998)
Boris Shoikhet, On the Duflo formula for $L_\infty$-algebras and Q-manifolds arXiv: Quantum Algebra. ,(1998)
Damien Calaque, Carlo Rossi, Lectures on Duflo isomorphisms in Lie algebra and complex geometry European Mathematical Society Publishing House. ,(2011) , 10.4171/096
Camille Laurent-Gengoux, Mathieu Stiénon, Ping Xu, Exponential map and L∞ algebra associated to a Lie pair Comptes Rendus Mathematique. ,vol. 350, pp. 817- 821 ,(2012) , 10.1016/J.CRMA.2012.08.009
Murray Gerstenhaber, The Cohomology Structure of an Associative Ring The Annals of Mathematics. ,vol. 78, pp. 267- ,(1963) , 10.2307/1970343
S. Gutt, An explicit *-product on the cotangent bundle of a Lie group Letters in Mathematical Physics. ,vol. 7, pp. 249- 258 ,(1983) , 10.1007/BF00400441
M. Pevzner, Ch. Torossian, Isomorphisme de Duflo et la cohomologie tangentielle Journal of Geometry and Physics. ,vol. 51, pp. 486- 505 ,(2004) , 10.1016/J.GEOMPHYS.2004.03.001
Alberto S. Cattaneo, Giovanni Felder, Relative formality theorem and quantisation of coisotropic submanifolds Advances in Mathematics. ,vol. 208, pp. 521- 548 ,(2007) , 10.1016/J.AIM.2006.03.010
George S. Rinehart, DIFFERENTIAL FORMS ON GENERAL COMMUTATIVE ALGEBRAS Transactions of the American Mathematical Society. ,vol. 108, pp. 195- 222 ,(1963) , 10.1090/S0002-9947-1963-0154906-3