Understanding spatial filtering for analysis of land use-transport data

作者: Yiyi Wang , Kara M. Kockelman , Xiaokun (Cara) Wang

DOI: 10.1016/J.JTRANGEO.2013.06.001

关键词: Land useAutoregressive modelDistance decaySpatial filterComputer scienceBayesian probabilitySpatial analysisEconometricsProbitLand use, land-use change and forestryStatistics

摘要: This paper summarizes the literature on spatial filtering (SF) for analysis of data. Given scarcity its application in transportation and fledgling nature, preliminary case studies were conducted using continuous discrete response data sets, land values use, comparison with results from autoregressive (SAR) models distance decay parameters estimated Bayesian techniques. For both value binary use cases, SF approach demonstrates great potential as a worthy competitor to more conventional SAR-based models. In addition offering high fit statistics, somewhat shorter computing times, straightforward computations, makes explicit patterns dependency By controlling these relationships, yields reliable marginal effects policy variables interest. Model confirm important role access (as quantified distances region’s central business district, various roadway types).

参考文章(38)
Debbie A. Niemeier, Accessibility: an evaluation using consumer welfare Transportation. ,vol. 24, pp. 377- 396 ,(1997) , 10.1023/A:1004914803019
Chris Brunsdon, Martin Charlton, A S Fotheringham, Geographically Weighted Regression: The Analysis of Spatially Varying Relationships ,(2002)
Luc Anselin, Sheri Hudak, Spatial econometrics in practice: A review of software options Regional Science and Urban Economics. ,vol. 22, pp. 509- 536 ,(1992) , 10.1016/0166-0462(92)90042-Y
Michael Tiefelsdorf, Daniel A Griffith, Semiparametric Filtering of Spatial Autocorrelation: The Eigenvector Approach Environment and Planning A. ,vol. 39, pp. 1193- 1221 ,(2007) , 10.1068/A37378
Xiaokun (Cara) Wang, Kara M. Kockelman, Jason D. Lemp, The dynamic spatial multinomial probit model: analysis of land use change using parcel-level data Journal of Transport Geography. ,vol. 24, pp. 77- 88 ,(2012) , 10.1016/J.JTRANGEO.2012.06.011
James P. LeSage, R. Kelley Pace, Introduction to spatial econometrics ,(2009)
P. Jong, C. Sprenger, F. Veen, On Extreme Values of Moran's I and Geary's c Geographical Analysis. ,vol. 16, pp. 17- 24 ,(2010) , 10.1111/J.1538-4632.1984.TB00797.X
Yiheng Zhang, Dana H. Brooks, Maria Angela Franceschini, David A. Boas, Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging. Journal of Biomedical Optics. ,vol. 10, pp. 011014- 01101411 ,(2005) , 10.1117/1.1852552
Daniel A. Griffith, Pedro R. Peres-Neto, SPATIAL MODELING IN ECOLOGY: THE FLEXIBILITY OF EIGENFUNCTION SPATIAL ANALYSES Ecology. ,vol. 87, pp. 2603- 2613 ,(2006) , 10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2
Xiaokun Wang, Kara M. Kockelman, BAYSIAN INFERENCE FOR ORDERED RESPONSE DATA WITH A DYNAMIC SPATIAL-ORDERED PROBIT MODEL Journal of Regional Science. ,vol. 49, pp. 877- 913 ,(2009) , 10.1111/J.1467-9787.2009.00622.X