Electrostatic Potentials for Semi-Infinite and Lamellar Cubic Lattices Containing Several Different Kinds of Ions Per Unit Cell

作者: Edgar A. Kraut , Thomas Wolfram , William Hall

DOI: 10.1103/PHYSREVB.6.1499

关键词: Materials scienceIonMolecular physicsLattice (order)StackingImpuritySemi-infiniteLamellar structurePlanar latticeCubic crystal system

摘要: The electrostatic potential for a square planar lattice of positive, unit, point charges neutralized by uniform-negative-background charge is developed and numerically tabulated. By stacking up such planes, potentials are constructed infinite, semi-infinite, lamellar-neutralized, simple-cubic lattices positive charges; numerical results presented. relation between obtained smearing out the neutralizing over all space confining to planes explicitly exhibited. Using SrTi${\mathrm{O}}_{3}$, perovskite, as specific example, it shown how tabulated given here may be used obtain on surface within complex cubic crystal containing several kinds ions per unit cell. methods obtaining above or in presence vacancies impurities briefly indicated.

参考文章(4)
A. H. Kahn, A. J. Leyendecker, Electronic Energy Bands in Strontium Titanate Physical Review. ,vol. 135, pp. 1321- 1325 ,(1964) , 10.1103/PHYSREV.135.A1321
Jules D. Levine, Peter Mark, Theory and Observation of Intrinsic Surface States on Ionic Crystals Physical Review. ,vol. 144, pp. 751- 763 ,(1966) , 10.1103/PHYSREV.144.751
F. Hund, Vergleich der elektrostatischen Energien einiger Ionengitter European Physical Journal. ,vol. 94, pp. 11- 21 ,(1935) , 10.1007/BF01330792
Yosio Sakamoto, Ukiko Takahasi, Born's and Hund's Basic Potential as Useful Tools for Calculating Madelung's Coefficients of Complex Crystals The Journal of Chemical Physics. ,vol. 30, pp. 337- 338 ,(1959) , 10.1063/1.1729922