Families of moment matching based, structure preserving approximations for linear port Hamiltonian systems

作者: Tudor C. Ionescu , Alessandro Astolfi

DOI: 10.1016/J.AUTOMATICA.2013.05.006

关键词: Moment (mathematics)Hamiltonian path problemHamiltonian (control theory)Applied mathematicsInterpolationLinear systemParameterized complexityHamiltonian systemDiscrete mathematicsMatching (statistics)MathematicsControl and Systems EngineeringElectrical and Electronic Engineering

摘要: In this paper we propose a solution to the problem of moment matching with preservation port Hamiltonian structure, in framework time-domain matching. We characterize several families parameterized models that match moments given system, at set finite interpolation points. also discuss Markov parameters for linear systems as descriptor representations associated zero Solving yields reduced order achieve parameter Finally, apply these results case, resulting approximations.

参考文章(21)
Eric James Grimme, Krylov Projection Methods for Model Reduction University of Illinois at Urbana Champaign. ,(1997)
Athanasios C. Antoulas, Approximation of Large-Scale Dynamical Systems ,(2005)
K. Gallivan, A. Vandendorpe, P. Van Dooren, Model Reduction of MIMO Systems via Tangential Interpolation SIAM Journal on Matrix Analysis and Applications. ,vol. 26, pp. 328- 349 ,(2005) , 10.1137/S0895479803423925
Rostyslav V. Polyuga, Arjan van der Schaft, Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity Automatica. ,vol. 46, pp. 665- 672 ,(2010) , 10.1016/J.AUTOMATICA.2010.01.018
Imad M. Jaimoukha, Ebrahim M. Kasenally, Implicitly Restarted Krylov Subspace Methods for Stable Partial Realizations SIAM Journal on Matrix Analysis and Applications. ,vol. 18, pp. 633- 652 ,(1997) , 10.1137/S0895479895279873
Christopher I. Byrnes, Anders Lindquist, Important Moments in Systems and Control Siam Journal on Control and Optimization. ,vol. 47, pp. 2458- 2469 ,(2008) , 10.1137/070693941
King-wah Eric Chu, The solution of the matrix equations AXB−CXD=E AND (YA−DZ,YC−BZ)=(E,F) Linear Algebra and its Applications. ,vol. 93, pp. 93- 105 ,(1987) , 10.1016/S0024-3795(87)90314-4
Romeo Ortega, Arjan van der Schaft, Bernhard Maschke, Gerardo Escobar, Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems Automatica. ,vol. 38, pp. 585- 596 ,(2002) , 10.1016/S0005-1098(01)00278-3
Thomas Wolf, Boris Lohmann, Rudy Eid, Paul Kotyczka, Passivity and Structure Preserving Order Reduction of Linear Port-Hamiltonian Systems Using Krylov Subspaces European Journal of Control. ,vol. 16, pp. 401- 406 ,(2010) , 10.3166/EJC.16.401-406
Richard Ewen Campbell, Singular Systems of Differential Equations ,(1980)