Fringe trees, Crump–Mode–Jagers branching processes and $m$-ary search trees

作者: Cecilia Holmgren , Svante Janson

DOI: 10.1214/16-PS272

关键词: MathematicsBranching (linguistics)Discrete mathematicsBranching process

摘要: This survey studies asymptotics of random fringe trees and extended in that can be constructed as family a Crump-Mode-Jagers branching process, stopped at suita ...

参考文章(101)
Peter Jagers, Olle Nerman, The asymptotic composition of supercritical, multi-type branching populations Lecture Notes in Mathematics. ,vol. 30, pp. 40- 54 ,(1996) , 10.1007/BFB0094640
J. Neveu, Arbres et processus de Galton-Watson Annales De L Institut Henri Poincare-probabilites Et Statistiques. ,vol. 22, pp. 199- 207 ,(1986)
Pascal Hennequin, Analyse en moyenne d'algorithmes, tri rapide et arbres de recherche Palaiseau, Ecole polytechnique. ,(1991)
Anna Rudas, Bálint Tóth, Random Tree Growth with Branching Processes — A Survey Springer Berlin Heidelberg. pp. 171- 202 ,(2008) , 10.1007/978-3-540-69395-6_4
Luc Devroye, Colin McDiarmid, Bruce Reed, Giant Components for Two Expanding Graph Processes Birkhäuser, Basel. pp. 161- 173 ,(2002) , 10.1007/978-3-0348-8211-8_10
Mireille Régnier, A limiting distribution for quicksort Theoretical Informatics and Applications. ,vol. 23, pp. 335- 343 ,(1989) , 10.1051/ITA/1989230303351
Jürgen Bennies, Götz Kersting, A Random Walk Approach to Galton–Watson Trees Journal of Theoretical Probability. ,vol. 13, pp. 777- 803 ,(2000) , 10.1023/A:1007862612753