Objective Liver Fibrosis Estimation from Shear Wave Elastography

作者: Laura J. Brattain , Brian A. Telfer , Manish Dhyani , Joseph R. Grajo , Anthony E. Samir

DOI: 10.1109/EMBC.2018.8513011

关键词: Liver biopsyLiver diseaseShear wave elastographyPattern recognitionCirrhosisFatty liverFibrosisRegion of interestBiopsyRandom forestArtificial intelligenceElastographyImage qualityPopulationComputer scienceLiver fibrosis

摘要: Diffuse liver disease is common, primarily driven by high prevalence of non-alcoholic fatty (NAFLD). It currently assessed biopsy to determine fibrosis, often staged as F0 (normal) - F4 (cirrhosis). A noninvasive assessment method will allow a broader population be monitored longitudinally, facilitating risk stratification and treatment efficacy assessment. Ultrasound shear wave elastography (SWE) promising technique for measuring tissue stiffness that has been shown correlate with fibrosis stage. However, this approach limited variability in measurements. In work, we developed evaluated an automated framework, called SWE-Assist, checks SWE image quality, selects region interest (ROI), classifies the ROI whether stage at or exceeds F2, which important clinical decisionmaking. Our database consists 3,392 images from 328 cases. Several classifiers, including random forest, support vector machine, convolutional neural network (CNN)) were evaluated. The best utilized CNN yielded area under receiver operating curve (AUROC) 0.89, compared conventional only based AUROC 0.74. Moreover, new on single per decision, vs. 10 decision baseline. larger dataset needed further validate approach, potential improve accuracy efficiency non-invasive staging.

参考文章(26)
Corinna Cortes, Vladimir Vapnik, Support-Vector Networks Machine Learning. ,vol. 20, pp. 273- 297 ,(1995) , 10.1023/A:1022627411411
M. Fink, J. Bercoff, M. Tanter, Supersonic shear imaging: a new technique for soft tissue elasticity mapping IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. ,vol. 51, pp. 396- 409 ,(2004) , 10.1109/TUFFC.2004.1295425
Vlad Ratziu, Frédéric Charlotte, Agnès Heurtier, Sophie Gombert, Philippe Giral, Eric Bruckert, André Grimaldi, Frédérique Capron, Thierry Poynard, Sampling Variability of Liver Biopsy in Nonalcoholic Fatty Liver Disease Gastroenterology. ,vol. 128, pp. 1898- 1906 ,(2005) , 10.1053/J.GASTRO.2005.03.084
Ilya Sutskever, Geoffrey E. Hinton, Alex Krizhevsky, ImageNet Classification with Deep Convolutional Neural Networks neural information processing systems. ,vol. 25, pp. 1097- 1105 ,(2012)
Andrzej Nowicki, , Katarzyna Dobruch-Sobczak, , Wprowadzenie do ultradźwiękowej elastografii Journal of Ultrasonography. ,vol. 16, pp. 113- 124 ,(2016) , 10.15557/JOU.2016.0013
Zobair M. Younossi, Deirdre Blissett, Robert Blissett, Linda Henry, Maria Stepanova, Youssef Younossi, Andrei Racila, Sharon Hunt, Rachel Beckerman, The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology. ,vol. 64, pp. 1577- 1586 ,(2016) , 10.1002/HEP.28785
Qi Zhang, Yang Xiao, Wei Dai, Jingfeng Suo, Congzhi Wang, Jun Shi, Hairong Zheng, Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics. ,vol. 72, pp. 150- 157 ,(2016) , 10.1016/J.ULTRAS.2016.08.004
Woo Kyung Moon, Yao-Sian Huang, Yan-Wei Lee, Shao-Chien Chang, Chung-Ming Lo, Min-Chun Yang, Min Sun Bae, Su Hyun Lee, Jung Min Chang, Chiun-Sheng Huang, Yi-Ting Lin, Ruey-Feng Chang, Computer-aided tumor diagnosis using shear wave breast elastography Ultrasonics. ,vol. 78, pp. 125- 133 ,(2017) , 10.1016/J.ULTRAS.2017.03.010
Manish Dhyani, Joseph R. Grajo, Atul K. Bhan, Kathleen Corey, Raymond Chung, Anthony E. Samir, Validation of Shear Wave Elastography Cutoff Values on the Supersonic Aixplorer for Practical Clinical Use in Liver Fibrosis Staging Ultrasound in Medicine & Biology. ,vol. 43, pp. 1125- 1133 ,(2017) , 10.1016/J.ULTRASMEDBIO.2017.01.022