A Study on the Use of Kriging Models to Approximate Deterministic Computer Models

作者: Jay D. Martin , Timothy W. Simpson

DOI: 10.1115/DETC2003/DAC-48762

关键词: Mathematical optimizationVariogramMaximum likelihoodKrigingApplied mathematicsModel parameterGlobal optimizationComputer experimentMathematics

摘要: The use of kriging models for approximation and global optimization has been steadily on the rise in past decade. standard approach used Design Analysis Computer Experiments (DACE) is to an Ordinary model approximate a deterministic computer model. Universal Detrended are two alternative types models. In this paper, description basics given, highlighting similarities differences between these three different underlying assumptions behind each. A comparative study then presented using six test problems. methods Maximum Likelihood Estimation (MLE) Cross-Validation (CV) parameter estimation compared types. one-dimension problem first visualize order show applications higher dimensions, four two-dimension 5-dimension also given.Copyright © 2003 by ASME

参考文章(17)
Donald R. Jones, Matthias Schonlau, William J. Welch, Efficient Global Optimization of Expensive Black-Box Functions Journal of Global Optimization. ,vol. 13, pp. 455- 492 ,(1998) , 10.1023/A:1008306431147
Ruichen Jin, Wei Chen, Agus Sudjianto, None, On Sequential Sampling for Global Metamodeling in Engineering Design design automation conference. pp. 539- 548 ,(2002) , 10.1115/DETC2002/DAC-34092
Ignacio G. Osio, Cristina H. Amon, An engineering design methodology with multistage Bayesian surrogates and optimal sampling Research in Engineering Design. ,vol. 8, pp. 189- 206 ,(1996) , 10.1007/BF01597226
A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini, V. Torczon, M. W. Trosset, A Rigorous Framework for Optimization of Expensive Functions by Surrogates Structural Optimization. ,vol. 17, pp. 1- 13 ,(1998) , 10.1007/BF01197708
T.W. Simpson, A.J. Booker, D. Ghosh, A.A. Giunta, P.N. Koch, R.-J. Yang, Approximation methods in multidisciplinary analysis and optimization: a panel discussion Structural and Multidisciplinary Optimization. ,vol. 27, pp. 302- 313 ,(2004) , 10.1007/S00158-004-0389-9
T.W. Simpson, J.D. Poplinski, P. N. Koch, J.K. Allen, Metamodels for Computer-based Engineering Design: Survey and recommendations Engineering With Computers. ,vol. 17, pp. 129- 150 ,(2001) , 10.1007/PL00007198
Thomas J Santner, Brian J Williams, William I Notz, Brain J Williams, None, The Design and Analysis of Computer Experiments ,(2003)
Georges Matheron, Principles of geostatistics Economic Geology. ,vol. 58, pp. 1246- 1266 ,(1963) , 10.2113/GSECONGEO.58.8.1246
Martin Meckesheimer, Andrew J. Booker, Russell R. Barton, Timothy W. Simpson, Computationally Inexpensive Metamodel Assessment Strategies AIAA Journal. ,vol. 40, pp. 2053- 2060 ,(2002) , 10.2514/2.1538
R. J. Beckman, M. D. McKay, W. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code Technometrics. ,vol. 42, pp. 55- 61 ,(2000) , 10.2307/1271432