Evolving Connectionist Systems with Evolutionary Self-Optimisatio

作者: N. Kasabov , Z. Chan , Q. Song , D. Greer

DOI: 10.1007/3-540-32374-0_9

关键词: Genetic algorithmComputer scienceFeature selectionMode (statistics)Feature (machine learning)Evolutionary computationConnectionismMachine learningArtificial intelligenceWeightingData dynamics

摘要: 9.8 Conclusions and Outlook In this work, we summarised our current efforts on applying EC to build self-optimising ECOS. Two forms of EC, namely GA and ES, have been applied to …

参考文章(34)
N.K. Kasabov, D.S. Dimitrov, A method for modelling genetic regulatory networks by using evolving connectionist systems and microarray gene expression data international conference on neural information processing. ,vol. 2, pp. 596- 601 ,(2002) , 10.1109/ICONIP.2002.1198127
Hans Georg Beyer, The Theory of Evolution Strategies ,(2001)
Huan Liu, Rudy Setiono, Incremental Feature Selection Applied Intelligence. ,vol. 9, pp. 217- 230 ,(1998) , 10.1023/A:1008363719778
Jose A. Lozano, Pedro Larraanaga, Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation Kluwer Academic Publishers. ,(2001)
Geoffrey Hinton, Radford M. Neal, Bayesian learning for neural networks ,(1995)