Exploiting Structure in Wavelet-Based Bayesian Compressive Sensing

作者: Lihan He , L. Carin

DOI: 10.1109/TSP.2009.2022003

关键词: Artificial intelligenceWaveletStationary wavelet transformWavelet packet decompositionMathematicsBayesian probabilityCascade algorithmMarkov chain Monte CarloWavelet transformBayesian inferencePattern recognition

摘要: … in digital media. One observes, however, that after the digital data are measured and then transform compressed, … Therefore, prior knowledge about images and the CS sensing process …

参考文章(47)
Yonina C. Eldar, Moshe Mishali, Robust Recovery of Signals From a Union of Subspaces ,(2008)
George Casella, Christian P. Robert, Monte Carlo Statistical Methods (Springer Texts in Statistics) Springer-Verlag New York, Inc.. ,(2005)
Gabriel Peyré, Best Basis Compressed Sensing Lecture Notes in Computer Science. pp. 80- 91 ,(2007) , 10.1007/978-3-540-72823-8_8
Michael E Tipping, Sparse bayesian learning and the relevance vector machine Journal of Machine Learning Research. ,vol. 1, pp. 211- 244 ,(2001) , 10.1162/15324430152748236
Hemant Ishwaran, J. Sunil Rao, Spike and slab variable selection: Frequentist and Bayesian strategies Annals of Statistics. ,vol. 33, pp. 730- 773 ,(2005) , 10.1214/009053604000001147
David L. Donoho, Yaakov Tsaig, Extensions of compressed sensing ,(2004)
Scott Shaobing Chen, David L. Donoho, Michael A. Saunders, Atomic Decomposition by Basis Pursuit SIAM Journal on Scientific Computing. ,vol. 20, pp. 33- 61 ,(1998) , 10.1137/S1064827596304010
Ali Hormati, Martin Vetterli, Annihilating filter-based decoding in the compressed sensing framework Proceedings of SPIE. ,vol. 6701, pp. 670121- ,(2007) , 10.1117/12.732308