Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models

作者: Dawei Liu , Debashis Ghosh , Xihong Lin

DOI: 10.1186/1471-2105-9-292

关键词: Regression analysisComputer scienceKernel (linear algebra)Nonparametric statisticsBayesian networkArtificial intelligenceGaussian processCovariateGeneralized linear mixed modelPolynomial kernelParametric statisticsMixed modelKernel methodMachine learningScore testKernel (statistics)Linear modelKernel regression

摘要: Background: Growing interest on biological pathways has called for new statistical methods modeling and testing a genetic pathway effect health outcome. The fact that genes within tend to interact with each other relate the outcome in complicated way makes nonparametric more desirable. kernel machine method provides convenient, powerful unified multi-dimensional parametric of effect. Results: In this paper we propose logistic regression model binary outcomes. This relates disease risk covariates parametrically, parametrically or nonparametrically using machines. allows possible interactions among same relationship We show estimation components can be formulated mixed model. Estimation hence proceed framework standard software. A score test based Gaussian process approximation is developed are illustrated prostate cancer data set evaluated simulations. An extension continuous discrete outcomes generalized models its connection linear discussed. Conclusion: Logistic provide novel flexible tool effects Their close attractive performance make them have promising wide applications bioinformatics biomedical areas.

参考文章(24)
Peter McCullagh, John Ashworth Nelder, Generalized Linear Models ,(1983)
Thomas G. Graeber, David Eisenberg, Bioinformatic identification of potential autocrine signaling loops in cancers from gene expression profiles. Nature Genetics. ,vol. 29, pp. 295- 300 ,(2001) , 10.1038/NG755
N. E. Breslow, D. G. Clayton, Approximate inference in generalized linear mixed models Journal of the American Statistical Association. ,vol. 88, pp. 9- 25 ,(1993) , 10.1080/01621459.1993.10594284
George Kimeldorf, Grace Wahba, Some results on Tchebycheffian spline functions Journal of Mathematical Analysis and Applications. ,vol. 33, pp. 82- 95 ,(1971) , 10.1016/0022-247X(71)90184-3
Kam D. Dahlquist, Nathan Salomonis, Karen Vranizan, Steven C. Lawlor, Bruce R. Conklin, GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nature Genetics. ,vol. 31, pp. 19- 20 ,(2002) , 10.1038/NG0502-19
Jelle J. Goeman, Sara A. van de Geer, Hans C. van Houwelingen, Testing against a high dimensional alternative Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 68, pp. 477- 493 ,(2006) , 10.1111/J.1467-9868.2006.00551.X
Saravana M. Dhanasekaran, Terrence R. Barrette, Debashis Ghosh, Rajal Shah, Sooryanarayana Varambally, Kotoku Kurachi, Kenneth J. Pienta, Mark A. Rubin, Arul M. Chinnaiyan, Delineation of prognostic biomarkers in prostate cancer. Nature. ,vol. 412, pp. 822- 826 ,(2001) , 10.1038/35090585
Steven G. Self, Kung-Yee Liang, Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests under Nonstandard Conditions Journal of the American Statistical Association. ,vol. 82, pp. 605- 610 ,(1987) , 10.1080/01621459.1987.10478472
Iris Eisenberg, Nili Avidan, Tamara Potikha, Hagit Hochner, Miriam Chen, Tsviya Olender, Mark Barash, Moshe Shemesh, Menachem Sadeh, Gil Grabov-Nardini, Inna Shmilevich, Adam Friedmann, George Karpati, Walter G. Bradley, Lisa Baumbach, Doron Lancet, Edna Ben Asher, Jacques S. Beckmann, Zohar Argov, Stella Mitrani-Rosenbaum, The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy Nature Genetics. ,vol. 29, pp. 83- 87 ,(2001) , 10.1038/NG718