SELF-ADJOINT OPERATORS AS FUNCTIONS I: LATTICES, GALOIS CONNECTIONS, AND THE SPECTRAL ORDER

作者: Andreas Döring , Barry Dewitt

DOI: 10.1007/S00220-014-1991-3

关键词: AlgebraGalois connectionUnbounded operatorSpectral theoremComplete latticeVon Neumann algebraOperator theoryAffiliated operatorSelf-adjoint operatorMathematics

摘要: Observables of a quantum system, described by self-adjoint operators in von Neumann algebra or affiliated with it the unbounded case, form conditionally complete lattice when equipped spectral order. Using this order-theoretic structure, we develop new perspective on observables.

参考文章(37)
Chris Isham, Andreas Doring, “What is a Thing?”: Topos Theory in the Foundations of Physics Lecture Notes in Physics. ,vol. 813, pp. 753- 937 ,(2010) , 10.1007/978-3-642-12821-9_13
Andreas Doering, Observables as functions: Antonymous functions arXiv: Quantum Physics. ,(2005)
New Structures for Physics Lecture Notes in Physics. ,vol. 813, ,(2011) , 10.1007/978-3-642-12821-9
Kurt Engesser, Daniel Lehmann, Dov M. Gabbay, Handbook of Quantum logic and Quantum Structures Elsevier. ,(2007)
Masamichi Takesaki, Theory of Operator Algebras II ,(1979)
Richard Kadison, John Robert Ringrose, Fundamentals of the Theory of Operator Algebras ,(1983)
Miklós Rédei, The Birkhoff-von Neumann concept of quantum logic Handbook of Quantum Logic and Quantum Structures#R##N#Quantum Logic. pp. 103- 117 ,(1998) , 10.1007/978-94-015-9026-6_7
Vera Deutsch, W.B. Barton, Martin Heidegger, Eugene T. Gendlin, What is a thing Philosophy and Rhetoric. ,vol. 5, ,(1967)
Andreas Doering, The physical interpretation of daseinisation arXiv: Quantum Physics. ,(2010)
F Hans, de Groote, Observables IV: The presheaf perspective arXiv: Mathematical Physics. ,(2007)