Artificial Neural Networks: A New Tool for Studying Lemur Vocal Communication

作者: Luca Pozzi , Marco Gamba , Cristina Giacoma

DOI: 10.1007/978-1-4614-4511-1_34

关键词: Artificial neural networkArtificial intelligenceBioacousticsLemurVocal communicationFormantRepertoireCategorizationComputer sciencePattern recognitionEulemur macaco

摘要: Previous studies have applied Artificial Neural Networks (ANNs) successfully to bioacoustic problems at different levels of analysis (individual and species identification, vocal repertoire categorization, sound structure) but not nonhuman primates. Here, we report the results applying this tool two important in primate communication. First, apply a supervised ANN classify 222 long grunt vocalizations emitted by five genus Eulemur. Second, use an unsupervised self-organizing network identify discrete categories within black lemurs (Eulemur macaco). Calls were characterized both spectral (fundamental frequency formants) temporal features. The result show only that ANNs are effective for studying also can increase efficiency, objectivity, biological significance classification greatly. advantages over more commonly used statistical techniques applications discussed.

参考文章(23)
Michael R. W. Dawson, Isabelle Charrier, Christopher B. Sturdy, Using an artificial neural network to classify black-capped chickadee (Poecile atricapillus) call note types. Journal of the Acoustical Society of America. ,vol. 119, pp. 3161- 3172 ,(2006) , 10.1121/1.2189028
Carly M. Nickerson, Laurie L. Bloomfield, Michael R. W. Dawson, Christopher B. Sturdy, Artificial neural network discrimination of black-capped chickadee (Poecile atricapillus) call notes Journal of the Acoustical Society of America. ,vol. 120, pp. 1111- 1117 ,(2006) , 10.1121/1.2211509
Sean R. Green, Eduardo Mercado, Adam A. Pack, Louis M. Herman, Recurring patterns in the songs of humpback whales (Megaptera novaeangliae) Behavioural Processes. ,vol. 86, pp. 284- 294 ,(2011) , 10.1016/J.BEPROC.2010.12.014
Marcelo T. Lopes, Lucas L. Gioppo, Thiago T. Higushi, Celso A.A. Kaestner, Carlos N. Silla Jr., Alessandro L. Koerich, Automatic Bird Species Identification for Large Number of Species international symposium on multimedia. pp. 117- 122 ,(2011) , 10.1109/ISM.2011.27
N. Jennings, S. Parsons, M. J.O. Pocock, Human vs. machine : identification of bat species from their echolocation calls by humans and by artificial neural networks Canadian Journal of Zoology. ,vol. 86, pp. 371- 377 ,(2008) , 10.1139/Z08-009
Gregory S. Campbell, Robert C. Gisiner, David A. Helweg, Linda L. Milette, Acoustic identification of female Steller sea lions (Eumetopias jubatus). Journal of the Acoustical Society of America. ,vol. 111, pp. 2920- 2928 ,(2002) , 10.1121/1.1474443
E.D. Chesmore, E. Ohya, Automated identification of field-recorded songs of four British grasshoppers using bioacoustic signal recognition Bulletin of Entomological Research. ,vol. 94, pp. 319- 330 ,(2004) , 10.1079/BER2004306
STEFANO GHIRLANDA, MAGNUS ENQUIST, Artificial neural networks as models of stimulus control Animal Behaviour. ,vol. 56, pp. 1383- 1389 ,(1998) , 10.1006/ANBE.1998.0903