Tendency of spherically imploding plasma liners formed by merging plasma jets to evolve toward spherical symmetry.

作者: J. T. Cassibry , M. Stanic , S. C. Hsu , F. D. Witherspoon , S. I. Abarzhi

DOI: 10.1063/1.4714606

关键词: Jet (fluid)Smoothed-particle hydrodynamicsPhysicsPlasmaAtomic physicsAtmospheric-pressure plasmaInstabilityRayleigh–Taylor instabilityImplosionCircular symmetryMechanics

摘要: We have performed three-dimensional (3D) simulations using smoothed particle hydrodynamics (SPH) in order to study the effects of discrete plasma jets on processes liner formation, implosion vacuum, and expansion. It was found that pressure histories inner portion from 3D SPH with a uniform 30 were qualitatively quantitatively similar peak compression through complete stagnation liner. The first benchmarked against results one-dimensional radiation-hydrodynamic [T. J. Awe et al., Phys. Plasmas 18, 072705 (2011)]. Two-dimensional plots field show jet case evolves towards profile is almost indistinguishable liner, thus indicating non-uniformities due are smeared out by late stages implosion. formation vacuum shown be robust Rayleigh-Taylor instability growth. Finally, interparticle mixing for imploding investigated. rate very small until after simulations.

参考文章(30)
T. Intrator, S. Y. Zhang, J. H. Degnan, I. Furno, C. Grabowski, S. C. Hsu, E. L. Ruden, P. G. Sanchez, J. M. Taccetti, M. Tuszewski, W. J. Waganaar, G. A. Wurden, A high density field reversed configuration (FRC) target for magnetized target fusion: First internal profile measurements of a high density FRC Physics of Plasmas. ,vol. 11, pp. 2580- 2585 ,(2004) , 10.1063/1.1689666
J. Bonet, T.-S.L. Lok, Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations Computer Methods in Applied Mechanics and Engineering. ,vol. 180, pp. 97- 115 ,(1999) , 10.1016/S0045-7825(99)00051-1
I.R. Lindemuth, R.C. Kirkpatrick, Parameter space for magnetized fuel targets in inertial confinement fusion Nuclear Fusion. ,vol. 23, pp. 263- 284 ,(1983) , 10.1088/0029-5515/23/3/001
Smoothed particle hydrodynamics Reports on Progress in Physics. ,vol. 68, pp. 1703- 1759 ,(2005) , 10.1088/0034-4885/68/8/R01
S. A. Slutz, M. C. Herrmann, R. A. Vesey, A. B. Sefkow, D. B. Sinars, D. C. Rovang, K. J. Peterson, M. E. Cuneo, Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field Physics of Plasmas. ,vol. 17, pp. 056303- ,(2010) , 10.1063/1.3333505
D. B. Sinars, S. A. Slutz, M. C. Herrmann, R. D. McBride, M. E. Cuneo, K. J. Peterson, R. A. Vesey, C. Nakhleh, B. E. Blue, K. Killebrew, D. Schroen, K. Tomlinson, A. D. Edens, M. R. Lopez, I. C. Smith, J. Shores, V. Bigman, G. R. Bennett, B. W. Atherton, M. Savage, W. A. Stygar, G. T. Leifeste, J. L. Porter, Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid Al tubes driven by the 20-MA, 100-ns Z facility. Physical Review Letters. ,vol. 105, pp. 185001- 185001 ,(2010) , 10.1103/PHYSREVLETT.105.185001
L. B. Lucy, A numerical approach to the testing of the fission hypothesis The Astronomical Journal. ,vol. 82, pp. 1013- 1024 ,(1977) , 10.1086/112164
J. T. Cassibry, S. C. Hsu, D. S. Hanna, T. J. Awe, J. S. Davis, C. S. Adams, One-dimensional radiation-hydrodynamic scaling studies of imploding spherical plasma liners Physics of Plasmas. ,vol. 18, pp. 072705- ,(2011) , 10.1063/1.3610374
Snezhana I. Abarzhi, Review of theoretical modelling approaches of Rayleigh-Taylor instabilities and turbulent mixing. Philosophical Transactions of the Royal Society A. ,vol. 368, pp. 1809- 1828 ,(2010) , 10.1098/RSTA.2010.0020