作者: Lauren Lazarus , Matthew Davidow , Richard Rand
DOI: 10.1016/J.IJNONLINMEC.2015.10.005
关键词: Parametric statistics 、 Numerical analysis 、 Limit cycle 、 Mathematical analysis 、 Perturbation (astronomy) 、 Nonlinear system 、 Quasiperiodic function 、 Mathematics 、 Excitation 、 Parameter space
摘要: This paper involves the dynamics of a delay limit cycle oscillator being driven by time-varying perturbation in delay: x=−x(t−T(t))−ϵx3 with T(t)=π2+ϵk+ϵcosωt. is chosen to periodically cross stability boundary for x=0 equilibrium constant-delay system. For most parameter space, system non-resonant, leading quasiperiodic behavior. However, region 2:1 resonance shown exist where system׳s response frequency entrained half forcing ω. By combination analytical and numerical methods, we find that transition between behavior consists variety local global bifurcations, with corresponding regions multiple stable unstable steady-states.