Dynamics of an oscillator with delay parametric excitation

作者: Lauren Lazarus , Matthew Davidow , Richard Rand

DOI: 10.1016/J.IJNONLINMEC.2015.10.005

关键词: Parametric statisticsNumerical analysisLimit cycleMathematical analysisPerturbation (astronomy)Nonlinear systemQuasiperiodic functionMathematicsExcitationParameter space

摘要: This paper involves the dynamics of a delay limit cycle oscillator being driven by time-varying perturbation in delay: x=−x(t−T(t))−ϵx3 with T(t)=π2+ϵk+ϵcosωt. is chosen to periodically cross stability boundary for x=0 equilibrium constant-delay system. For most parameter space, system non-resonant, leading quasiperiodic behavior. However, region 2:1 resonance shown exist where system׳s response frequency entrained half forcing ω. By combination analytical and numerical methods, we find that transition between behavior consists variety local global bifurcations, with corresponding regions multiple stable unstable steady-states.

参考文章(8)
Richard Rand, Differential-Delay Equations Springer Berlin Heidelberg. pp. 83- 117 ,(2011) , 10.1007/978-3-642-17593-0_3
Lauren Lazarus, Matthew Davidow, Richard Rand, Dynamics of a delay limit cycle oscillator with self-feedback Nonlinear Dynamics. ,vol. 82, pp. 481- 488 ,(2015) , 10.1007/S11071-015-2169-Z
G. Stépán, Retarded dynamical systems : stability and characteristic functions Longman Scientific & Technical , Wiley. ,(1989)
Tamas Insperger, Gabor Stepan, Stability Analysis of Turning With Periodic Spindle Speed Modulation Via Semidiscretization Journal of Vibration and Control. ,vol. 10, pp. 1835- 1855 ,(2004) , 10.1177/1077546304044891
John Guckenheimer, Philip Holmes, M. Slemrod, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields ,(1983)
Richard Rand, Albert Barcilon, Tina Morrison, Parametric Resonance of Hopf Bifurcation Nonlinear Dynamics. ,vol. 39, pp. 411- 421 ,(2005) , 10.1007/S11071-005-3400-0
Andreas F. Haselsteiner, Cole Gilbert, Z. Jane Wang, Tiger beetles pursue prey using a proportional control law with a delay of one half-stride Journal of the Royal Society Interface. ,vol. 11, pp. 20140216- 20140216 ,(2014) , 10.1098/RSIF.2014.0216