Theory of Outlier Ensembles

作者: Charu C. Aggarwal , Saket Sathe

DOI: 10.1007/978-3-319-54765-7_2

关键词: Artificial intelligenceOutlierComputer scienceAnomaly detectionData recordsEnsemble analysisPattern recognition

摘要: Outlier detection is an unsupervised problem, in which labels are not available with data records (Aggarwal, analysis, 2017, [2]). As a result, it generally more challenging to design ensemble analysis algorithms for outlier detection. In particular, methods that require the use of intermediate steps algorithm cannot be generalized

参考文章(31)
Mahsa Salehi, Christopher A. Leckie, Masud Moshtaghi, Tharshan Vaithianathan, A Relevance Weighted Ensemble Model for Anomaly Detection in Switching Data Streams pacific-asia conference on knowledge discovery and data mining. pp. 461- 473 ,(2014) , 10.1007/978-3-319-06605-9_38
Shebuti Rayana, Leman Akoglu, Less is More: Building Selective Anomaly Ensembles ACM Transactions on Knowledge Discovery From Data. ,vol. 10, pp. 42- ,(2016) , 10.1145/2890508
Tin Kam Ho, Nearest Neighbors in Random Subspaces Lecture Notes in Computer Science. pp. 640- 648 ,(1998) , 10.1007/BFB0033288
Eun Bae Kong, Thomas G. Dietterich, Error-Correcting Output Coding Corrects Bias and Variance Machine Learning Proceedings 1995. pp. 313- 321 ,(1995) , 10.1016/B978-1-55860-377-6.50046-3
Ron Kohavi, David Wolpert, Bias plus variance decomposition for zero-one loss functions international conference on machine learning. pp. 275- 283 ,(1996)
Thomas G. Dietterich, Ensemble Methods in Machine Learning Multiple Classifier Systems. pp. 1- 15 ,(2000) , 10.1007/3-540-45014-9_1
Thomas G. Dietterich, Giorgio Valentini, Bias-Variance Analysis of Support Vector Machines for the Development of SVM-Based Ensemble Methods Journal of Machine Learning Research. ,vol. 5, pp. 725- 775 ,(2004) , 10.5555/1005332.1016783
Nada Lavrac, Igor Mozetic, Jiarong Hong, Ryszard S. Michalski, The multi-purpose incremental learning system AQ15 and its testing application to three medical domains national conference on artificial intelligence. pp. 1041- 1045 ,(1986)